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Abstract. Given a variational problem defined by a natural La-
grangian density Lω on the k-jet extension Jk(Y/X) of a nat-
ural bundle p : Y → X over a n-dimensional manifold X, ori-
ented by a volume element ω, a Stress-Energy-Momentum tensor
T (s) is constructed for each section s ∈ Γ(X, Y ) from the mul-
timomentum map µΘ : Γ(X, Y ) → HomR(X(X),Ωn−1(X)) associ-
ated to any Poincaré-Cartan form Θ and to the natural lifting
of vector fields X(X) to the bundle Y → X. The characteri-
zation made for T (s) gives an intrinsic expression of this tensor
as well as a generalization of the classical Belinfante-Rosenfeld
formula. This tensor satisfies the typical properties of a Stress-
Energy-Momentum tensor: Diff(X)-covariance, Hilbert formula,
conservation law, etc. . . Furthermore, it plays the expected role in
the theory of minimal gravitational interactions.
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1. Introduction

In an inspired article by M.J. Gotay and J.E. Marsden [14], a new
method of constructing Stress-Energy-Momentum tensors is presented,
based on the Noether Theory for first order Variational Calculus.

Let Θ be the Poincaré-Cartan form associated to a Lagrangian den-
sity Lω on the 1-jet extension J1(Y/X) of a bundle p : Y → X over
a n-dimensional manifold X, oriented by a volume element ω. If the
bundle p : Y → X and the Lagrangian density Lω are natural, the mul-
timomentum map µ : Γ(X,Y ) → HomR(X(X),Ωn−1(X)) associated to
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the natural lifting D ∈ X(X) 7→ D̃ ∈ X(Y ) of vector fields D ∈ X(X)
by infinitesimal symmetries of the variational problem is given by the
formula:

(1.1) µ(s)(D) = (j1s)∗[i(j1D̃)Θ]

where s ∈ Γ(X, Y ).
In this situation a fundamental result of the above mentioned article

is the following:
If the natural lifting is of differential index 1, then for each section s ∈

Γ(X, Y ) there exists an unique tensor T (s) ∈ Γ(
∧1 T ∗X ⊗

∧n−1 T ∗X)
such that: ∫

S

iDT (s) =

∫
S

µ(s)(D)

for each vector field of compact support D ∈ XC(X) and every hyper-
superface S ⊂ X.

The tensor thus defined satisfies the typical properties of a Stress-
Energy-Momentum tensor, hence obtaining a variational characteriza-
tion of this basic concept.

A natural question that now arises is the following: Is it possible to
generalize this characterization to higher order Variational Calculus?

As is well known, the modern formulation of the Hamilton-Cartan
Theory of Variational Calculus, established in the early 70’s for first
order problems ([8, 11, 12, 15]), was generalized to higher order in the
early 80’s ([6, 7, 10, 16]). In the diverse approaches proposed, the ob-
ject canonically associated to a Lagrangian density Lω on the k-jet
extension Jk(Y/X) is not a single Poincaré-Cartan form but rather a
family {Θ}Lω of them. In this way, under the same naturality condi-
tions for the bundle p : Y → X and the Lagrangian density Lω, we
have a family {µΘ}Lω of multimomentum maps defined by the family
{Θ}Lω of Poincaré-Cartan forms using the same formula (1.1) of the
first order problems.

In the present work, the above result is generalized to higher order
variational problems under the following differential formulation:

Theorem. Given a natural Lagrangian density Lω on the k-jet bundle
Jk(Y/X) of a natural bundle p : Y → X of differential index 1, one
has:

(1) For each section s ∈ Γ(X,Y ) there exists a unique tensor T (s) ∈
Γ(T ∗X ⊗

∧n−1 T ∗X) such that:

(1.2) iDT (s) = µΘ(s)(D) + dα
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for every Poincaré-Cartan form Θ and every vector field D ∈
X(X), where α is a (n − 2)-form on X that depends on Θ, s
and D.

(2) If E : s ∈ Γ(X,Y ) 7→ E(s) is the Euler-Lagrange operator of the
variational problem and Ps is the first order R-linear differential
operator between the vector bundles TX and s∗V (Y ) defined by
Ps : D 7→ D̃v

s (D̃v
s = p-vertical component of D̃ along s), then

the tensor T (s) can be explicitly expressed by the formula:

(1.3) iDT (s) = −E(s)(σ(Ps)(D)), D ∈ X(X)

where σ(Ps) is the symbol of the operator Ps and the contrac-
tions are the obvious ones.

(3) The assignation s ∈ Γ(X, Y ) 7→ T (s) ∈ Γ(T ∗X ⊗
∧n−1 T ∗X) is

Diff(X)-covariant; that is, for every diffeomorphism ϕ : X →
X, it holds that:

T (ϕ̃∗s) = ϕ∗T (s)

where ϕ̃ : Y → Y is the natural lifting of ϕ to the bundle p : Y →
X.

The characterization of T (s) given by formula (1.2) is in our opin-
ion an important intrinsic generalization to the higher order of the
classical Belinfante-Rosenfeld formula, according to which the Stress-
Energy-Momentum tensor T (s) is obtained by adding the operator
D 7→ d(α(Θ, s,D)) (the Belinfante-Rosenfeld “correction terms” in
this framework) to the value at s of the multimomentum map µΘ(s) ∈
HomR(X(X),Ωn−1(X)). Moreover, formula (1.3), which expresses the
tensor T (s) in terms of the Euler-Lagrange operator and the symbol
of the operator defined by the natural lifting, should be interpreted
as a generalization of the well known Hilbert definition for this con-
cept. Thus our formalism, not only provides a general definition for
the Stress-Energy-Momentum tensor of a variational problem but also
explains in a very simple and transparent way the relation existing
between the two main historical approaches to this theory.

The plan of the paper is the following. In §2 we review the as-
pects of higher order Variational Calculus that will be used. In §3, we
prove the theorem characterizing the Stress-Energy-Momentum tensor,
and its first properties and applications are established. In §4 we dis-
cuss the important special case of the metric parametrized Lagrangian
densities, proving other basic properties (Hilbert formula, conservation
law, etc...). In order to illustrate this theory, in §5 we address two
remarkable examples: the “electromagnetic field” and a certain class
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of “non-perfect relativistic fluids”. Particularly novel is the second ex-
ample, which allows us to formulate a general variational theory of
dissipative relativistic hydrodynamics. Finally, in §6 we analyze the
role played by the new concept in the theory of minimal gravitational
interactions.

All manifolds, maps, tensors, etc. . . will be considered to be C∞.
The notion of bundle will be understood in an ample sense, that is: a
C∞-locally trivial surjective submersion p : Y → X. Throughout the
paper we will use differential calculus with values in vector bundles,
following the reference [19] without explicitly mentioning it.

2. A review on higher order Variational Calculus

Here, we summarize the aspects of higher order Variational Calculus
that we shall use. We shall follow the formulation developed in [10, 25].
For other approaches to this topic, see [1, 7, 13, 20, 29] and references
therein.

Let p : Y → X be a bundle over a n-dimensional manifold X, ori-
ented by a volume element ω. Let Jk(Y/X) (briefly Jk) be the k-
jet bundle of local sections of p and pk : Jk → Y , p̄k : Jk → X the
canonical projections. For each h > k, let πhk : Jh → Jk be the pro-
jection πhk(j

h
xs) = jk

xs. If dimY = n + m and (xj, yi), 1 ≤ j ≤ n,
1 ≤ i ≤ m is a fibred local coordinate system for p, we shall denote by
(xj, y

i
α) , |α| ≤ k the natural induced coordinate system for Jk; that is:

yi
α(jk

xs) = ∂|α|

∂x
α1
1 ...∂xαn

n
(yi ◦ s)(x), where α = (α1, . . . , αn) is a multi-index

and |α| = α1 + . . .+ αn.

Definition 2.1. Given a section s ∈ Γ(X, Y ), the kth-order vertical
differential of s at a point x ∈ X is the linear mapping

(dv
ks)x : Tjk−1

x sJ
k−1 → Vjk−1

x s(J
k−1)

given by the following formula:

(dv
ks)x(D) = D − (jk−1s ◦ p̄k−1)∗(D)

where V (Jk) is the vertical bundle of the projection p̄k.

This notion allows us to define an 1-form θk on Jk with values in the
induced vector bundle V (Jk−1)Jk , by the rule:

θk
jk
xs(D) = (dv

ks)x(πk,k−1∗D)
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This is the so-called structure 1-form of Jk, which is given locally by
the expression:

θk =
∑

i

∑
|α|<k

θi
α ⊗

∂

∂yi
α

where θi
α = dyi

α −
∑

j

yi
α+(j)dxj

where (j) stands for the multiindex (j)k = δjk. This 1-form defines the
basic structure of the jet bundles, from which the diverse notions of
this theory are characterized. For example:

A section s̄ of p̄k : Jk → X is the k-jet prolongation of a section s of
p (i.e. s̄ = jks) if and only if s̄∗θk = 0.

A vector field D̄ on Jk is an infinitesimal contact transformation
of order k (briefly i.c.t.. of order k) if for any linear connection ∇ on
V (Jk−1) there exists an endomorphism f of the vector bundle V (Jk−1)Jk

such that LDθ
k = f ◦ θk, where the Lie derivative is taken with respect

to the connection ∇. The previous condition does not depend on the
connection ∇ and it holds that for any vector field D on Y (not nec-
essarily p-projectable) there exists a unique i.c.t. of order k, D(k),
projectable onto D. Moreover, the map D 7→ D(k) is an injection of
Lie algebras. The vector field D(k) is called the k-jet prolongation of
the vector field D.

Locally, if D =
∑

j uj
∂

∂xj
+
∑

i vi
∂

∂yi
with uj, vi ∈ C∞(Y ), then its k-

jet extension isD(k) =
∑

j uj
∂

∂xj
+
∑

i

∑k
|α|=0 v

i
α

∂
∂yi

α
, where the functions

vi
α ∈ C∞(J |α|) are determined by the recurrence relations:

vi
0 = vi ; vi

α+(l) = Dk,lv
i
α −

∑
j

yi
α+(j)Dk,luj ∀|α| < k

where Dk,l = ∂
∂xl

+
∑

i

∑
|α|<k y

i
α+(l)

∂
∂yi

α
, i ≤ l ≤ n is the total Lie

derivative with respect to xl, truncated at order k.
This characterization of the vector field prolongation admits the fol-

lowing more general version: if k > 0 and D̄ is an i.c.t. of order k,
for any r > k there exists a unique i.c.t. of order r, D̄(r), projectable
onto D̄. In particular, if D is a vector field on Y , it follows that D(r)

is projectable onto D(k) for every r > k (for more details on this issue,
see [24]).

Henceforth we shall denote by X(k) the Lie algebra of the i.c.t. of

order k and by X
(k)
c the ideal of this algebra defined by the i.c.t. whose

support has compact image in X by p̄k.
A variational problem of order k on the bundle p : Y → X is defined

by a function L ∈ C∞(Jk). The n-form Lω (Lagrangian density) defines
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a functional L : S(X) → R by the rule:

L(s) =

∫
jks

Lω =

∫
U

(jks)∗(Lω)

where S(X) is the space of sections s : U → Y (U an open set in X)
for which this integral exists.

For any section s ∈ Γ(X, Y ) a linear form δsL : X
(k)
c → R is defined

by the rule:

(2.1) (δsL)(D̄) =

∫
jks

LD̄(Lω) D̄ ∈ X(k)
c

Definition 2.2. A section s is critical for the Lagrangian density Lω
when δsL = 0.

A basic problem of the Variational Calculus is the characterization
of critical sections as solutions of some differential system defined on
an appropriate jet bundle. The Hamilton-Cartan formalism not only
solves this problem, but also allows one to generalize the ideas and con-
cepts from the ordinary Analytical Mechanics to variational calculus.
The starting point is the notion of the “Poincaré-Cartan form”, which,
according to the formulation we are following, can be introduced thus:

Theorem 2.3 ([25]). Given a Lagrangian density Lω on Jr and a pair
of linear connections (∇,∇) on X and V (Y ), respectively, a (V ∗Jk−1)J2k−1-
valued (n − 1)-form Ω on J2k−1 (momentum form) can be univocally
constructed, as well as a (V ∗Y )J2k−1-valued n-form (Euler-Lagrange
form E) such that:

(2.2) Θ = θk∧̄Ω + Lω dΘ = θ1∧̄E + θk∧̄(θk−1∧̄η)
where η is a HomJ2k−1(V J2k−2, V ∗Jk−1)-valued (n− 1)-form on J2k−1,
and where the exterior products are taken with respect to the natural
bilinear products.

Interpreting this result as an existence theorem for n-forms Θ on
J2k−1 satisfying the previous relations (2.2), we can give the following:

Definition 2.4. A Poincaré-Cartan form associated to the variational
problem of Lagrangian density Lω on the bundle Jk is an ordinary
n-form Θ on J2k−1 such that there exist forms Ω, E and η satisfying
the conditions (2.2) of the previous theorem. The set of all these forms
will be denoted by {Θ}Lω.

It should be mentioned that the different formulations of the Hamilton-
Cartan theory of higher order Variational Calculus have as starting
point an existence theorem of the former kind. The conditions (2.2)
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characterizing the notion of a Poincaré-Cartan form are an intrinsic
version of the classical “Lepage congruences” [21, 22] . For a more
detailed study of this notion, see [3, 20, 23] .

Note that the family {Θ}Lω is functorially associated to the La-
grangian density Lω in the following sense: for every automorphism
τ : Y → Y of the bundle p : Y → X, if τ(r) : J

r → Jr is its r-jet prolon-
gation it holds that τ ∗(2k−1)Θ ∈ {Θ}τ∗

(k)
Lω for every Θ ∈ {Θ}Lω.

The first application of the concept of the Poincaré-Cartan form
is the characterization of critical sections and proof of the Noether
Theorem in the following way:

Given any Poincaré-Cartan form Θ, by deriving the first equality
(2.2) with respect to an i.c.t. of order 2k − 1, D̄ and bearing in mind
the second of these equalities, we have:

Theorem 2.5 (First variation formula). There exists a V ∗(J2k−2)J2k−1-
valued (n− 1)-form ξ on J2k−1 such that:

(2.3) LD̄(Lω) = θ1(D̄) ◦ E + d(iD̄Θ) + θ2k−1∧̄ξ ∀D̄ ∈ X(2k−1)

The linear functional δsL defined by (2.1) will then be given by the
formula:

(δsL)(D) =

∫
jks

LD(Lω) =

∫
θ1(D(2k−1)) ◦ E, ∀D ∈ X(k)

c

Using Stokes’ Theorem and bearing in mind that the support of D
has compact image in X, it follows that:

Corollary 2.6 (First characterization of critical sections). A section
s ∈ Γ(X, Y ) is critical if and only if:

E
∣∣
j2k−1s

= 0

It is easy to see that, in a local coordinate system (xj, y
i
α) on J2k−1,

we have:

(2.4) E
∣∣
j2k−1s

=
∑

i

 k∑
r=0

∑
|β|=r

(−1)r

(
∂|β|

∂xβ

)(
∂L
∂yi

β

◦ jrs

) dyi ⊗ ω

which proves that the differential operator

E : Γ(X, Y ) → Γ(X, s∗V ∗(Y/X)⊗
∧n T ∗X)

s 7→ E(s) = E
∣∣
j2k−1s

does not depend on the particular Poincaré-Cartan form chosen and
that it coincides locally with the classical Euler-Lagrange equations.

From the second of the equations in (2.2) it now follows, by the
previous theorem, that:
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Corollary 2.7 (Second characterization of critical sections). A section
s ∈ Γ(X,Y ) is critical if and only if for every vector field D on J2k−1

it holds that:
iDdΘ

∣∣
j2k−1s

= 0

Furthermore, this condition does not depend on the particular Poincaré-
Cartan form chosen.

Regarding our second question, if we define an infinitesimal symme-
try of a variational problem with Lagrangian density Lω on Jk as an
i.c.t. D̄ of order k such that LD̄Lω = 0, the second of the equations
in (2.2) and the second characterization of critical sections prove the
following:

Theorem 2.8 (Noether). If D is an infinitesimal symmetry of the
variational problem given by the Lagrangian density Lω on Jk, then
for every Poincaré-Cartan form Θ and every critical section s, one has
that:

d
(
iD̄(2k−1)

Θ
) ∣∣

j2k−1s
= 0

Returning to the construction of the forms Ω and E from a La-
grangian density Lω and a pair of connections (∇,∇) on X and V (Y )
respectively (Theorem 2.3), it should be noted that, for a given La-
grangian density, even though E depends on the two connections, Ω by
contrast (and then Θ = θr∧̄Ω + Lω) only depends on the connection
∇.

Theorem 2.3 thus determines a subfamily of Poincaré-Cartan forms,
parametrized by the set of linear connections on X, {Θ∇}Lω ⊆ {Θ}Lω.
Moreover, it can be demonstrated that for k ≥ 2, the value taken by
Θ∇ at each point j2k−1

x s ∈ J2k−1 only depends on the jet jk−2
x (sym∇)

of the symmetric connection associated with ∇. Therefore, if K → X
is the (affine) bundle of linear connections on the manifold X, we can
give the following:

Definition 2.9. The universal Poincaré-Cartan form associated to a
Lagrangian density Lω on the jet bundle Jk is the ordinary n-form
Θ(Lω) on the manifold Z = Jk−2(K)×XJ

2k−1(Y ) given by the formula:

(Θ(Lω))(jk−2
x ∇,j2k−1

x s) = (Θ∇)j2k−1
x s

This n-form, which depends only on the Lagrangian density, is uni-
versal with respect to the subfamily {Θ∇}Lω ⊆ {Θ}Lω in the sense that
for each linear connection ∇ on X one has: Θ∇ = (jk−2∇)∗Θ(Lω).

The subfamily {Θ∇}Lω and the universal form Θ(Lω) are also func-
torially associated to the Lagrangian density Lω in the following sense:
For every automorphism τ : Y → Y of the bundle p : Y → X, if we
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denote by τ̄ the automorphism induced by the p̄ projection of τ on the
bundle K → X of linear connections on X, then τ ∗(2k−1) (Θτ̄∇(Lω)) =

Θ∇

(
τ ∗(k)Lω

)
and, analogously, (τ̄(k−2), τ(2k−1))

∗Θ(Lω) = Θ
(
τ ∗(k)Lω

)
.

The family {E∇,∇}Lω of Euler-Lagrange forms depends on the pair

(∇,∇) as follows: if E and E′ are the Euler-Lagrange forms correspond-

ing to (∇,∇) and (∇′,∇′
), then there exists a (n− 1)-form η on J2k−1

with values in HomJ2k−1

(
V (J2k−2), V ∗(Y )

)
-valued, horizontal over X,

such that:

E′ − E = θ2k−1∧̄η
Accordingly, by the second equation in (2.2), for k ≥ 2, if Θ and
Θ′ are the corresponding Poincaré-Cartan forms, there will exist a
HomJ2k−1

(
V J2k−2, V ∗Jk−1

)
-valued (n− 1)-form η̄ on J2k−1 such that:

dΘ′ − dΘ = θk∧̄(θ2k−1∧̄η̄)
Let us finally see how the corresponding Poincaré-Cartan forms differ

from each other:

Θ′ −Θ = θk−1∧̄ψ
where ψ is a V ∗(Jk−2)J2k−1-valued (n − 1)-form on J2k−1, horizontal
over X.

If ψ =
∑

|α|<k−1(−1)jψi
αjdx1 ∧ . . .∧ d̂xj ∧ . . .∧ dxn ⊗ dyi

α is the local

expression of the (n − 1)-form ψ with respect to the local coordinate
system (xj, y

i
α), it is proved in [25] that the coefficients ψi

αj verify the
equations: ∑

β+(j)=α

ψi
βj = 0, |α| = k − 1;

∑
j

Djψ
i
0j = 0(2.5)

∑
j

Djψ
i
αj +

∑
β+(j)=α

ψi
βj = 0, 0 < |α| < k − 1

where Dj = ∂
∂xj

+
∑

i,α y
i
α+(j)

∂
∂yi

α
is the total derivative with respect to

xj.
For k = 2, equations (2.5) have as their only solution ψi

αj = 0, which
proves that in this case the family {Θ∇}Lω degenerates to a unique
Poincaré-Cartan form. This form can be axiomatically characterized
(see [26]). Its local expression in a set of unimodular coordinates with
respect to ω is:

Θ =
∑
i,j

1∑
|α|=0

f i
αjθ

i
α ∧ dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn+

+Ldx1 ∧ . . . ∧ dxn

(2.6)
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where

f i
(k)j = (−1)j−1εjk

∂L
∂yi

(jk)

, f i
0k = (−1)k−1 ∂L

∂yi
(k)

+
∑

j

(−1)kεjkDj

(
∂L
∂yi

(jk)

)
where εjk = 1 if j = k, and εjk = 1

2
if j 6= k, (jk) = (j) + (k).

In particular, if L ∈ C∞(J1), the previous formula provides the usual
Poincaré-Cartan form of first order Variational Calculus:

Θ =θ1∧̄Ω + Lω =

(2.7)

=
∑

i

(dyi −
∑

k

yi
kdxk) ∧

∑
j

(−1)j−1 ∂L
∂yi

j

dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn

+ Ldx1 ∧ . . . ∧ dxn

For arbitrary k and n = 1, {Θ}Lω also degenerates to a unique
Poincaré-Cartan form, which coincides with that introduced in higher
order Analytical Mechanics (see [30] ).

3. The main Theorem

From now on we shall assume that the bundle p : Y → X and the
Lagrangian density Lω on Jk(Y/X) are natural [4, 27, 28]. From these
concepts, here we shall use only the existence of a lifting ϕ 7→ ϕ̃ to
the bundle Y of the pseudogroup Diff(X) of the local diffeomorphisms
of X by symmetries of the variational problem –that is: ϕ̃∗(k)Lω = Lω
for every ϕ ∈ Diff(X)– and its infinitesimal version: the existence
of a lifting D 7→ D̃ to the bundle Y of the real pseudo-Lie algebra
X(X) of the local vector fields on X by infinitesimal symmetries of the
variational problem (LD̃(k)

Lω = 0 for every D ∈ X(X)). Moreover, we

shall also assume that the lifting D 7→ D̃ has differential index 1, that
is, locally we may write uj

∂
∂xj

7→ uj
∂

∂xj
+vi

∂
∂yi

where vi = Chi
k

∂uk

∂xh
+Ci

juj,

and Chi
k , C

i
j ∈ C∞(Y ). This condition (obviously not depending on the

coordinate system chosen) holds in particular for the tensorial and
spinorial bundles over X.

For each section s ∈ Γ(X, Y ) the map Ps : D 7→ D̃V
s (D̃V

s = π-vertical
component of D̃ along s) is a first order linear differential operator
between the vector bundles T (X) and s∗V (Y ). Its local expression is:
(3.1)

uj
∂

∂xj

7→
(
Chi

k (xl, ym(x))
∂uk

∂xh

+

(
Ci

j(xl, ym(x))− ∂yi(x)

∂xj

)
uj

)
s∗

∂

∂yi
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where ym = ym(x) are the equations of the section s in the local co-
ordinate system under consideration. We also include in this class of
operators those whose differential index is 0.

The symbol σ(Ps) of the differential operator Ps (always considered
as a first order operator) defines a section of the vector bundle T ∗(X)⊗
T ∗(X)⊗ s∗V (Y ), whose local expression is:

σ(Ps) = Chi
k (xl, ym(x))dxk ⊗

∂

∂xh

⊗ s∗
∂

∂yi

Therefore, if Ps is of differential index 0 (so Chi
k = 0), its symbol σ(Ps)

will be 0.
Given a section E ∈ Γ(X, s∗V ∗(Y ) ⊗

∧n T ∗X) and a vector field
D ∈ X(X), let us evaluate the n-form E(Ps(D)) obtained by duality
pairing between the bundles s∗V (Y ) and s∗V ∗(Y ). If E = (Eis

∗dyi) ⊗
dx1 ∧ . . . ∧ dxn is the local expression of E and we denote by ωh the
inner product i ∂

∂xh

dx1 ∧ . . . ∧ dxn, by (3.1) we have:

E(Ps(D)) =Ei

(
Chi

k

∂uk

∂xh

+

(
Ci

j −
∂yi

∂xj

)
uj

)
dx1 ∧ . . . ∧ dxn

(3.2)

=EiC
hi
k duk ∧ ωh + Ei

(
Ci

j −
∂yi

∂xj

)
ujdx1 ∧ . . . ∧ dxn

=− ∂EiC
hi
k

∂xh

ukdx1 ∧ . . . ∧ dxn + d
(
EiC

hi
k ukωh

)
+ Ei

(
Ci

j −
∂yi

∂xj

)
ujdx1 ∧ . . . ∧ dxn

=

(
− ∂

∂xh

(
Chi

j Ei

)
+

(
Ci

j −
∂yi

∂xj

)
Ei

)
ujdx1 ∧ . . . ∧ dxn

+ d (E (σ(Ps)(D)))

It can therefore be defined a first order linear differential operator
between the vector bundles s∗V ∗(Y )⊗

∧n T ∗X and T ∗X⊗
∧n T ∗X by

the formula:

(3.3) P+
s (E)(D) = E(Ps(D))− d [E(σ(Ps)(D))]

Its local expression is given by the penultimate term in the calcula-
tion (3.2).

Moreover, from (3.3) it can immediately be seen that this opera-
tor coincides with the adjoint operator of Ps over the vector fields of
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compact support, that is:

(3.4)

∫
X

P+
s (E)(D) =

∫
X

E(Ps(D))

for every D ∈ Xc(X) and E ∈ Γ(X, s∗V ∗(Y )⊗
∧n T ∗X).

It should be also remarked that the term in the differential in (3.3)
defines, for each section E ∈ Γ(X, s∗V ∗(Y ) ⊗

∧n T ∗X), a tensor
D 7→ E(σ(Ps)(D)) on X, which will be essential in this work, and
this is due to the fact that the lifting D 7→ D̃ has differential index 1.

Finally, if Θ ∈ {Θ}Lω is a Poincaré-Cartan form of the variational
problem, the multimomentum map

µΘ : Γ(X, Y ) → HomR(X(X),Ωn−1(X))

associated to Θ and the natural lifting D 7→ D̃ is given by the formula:

(3.5) µΘ(s)(D) = (j2k−1s)∗(iD̃(2k−1)
Θ), s ∈ Γ(X, Y ), D ∈ X(X)

With the concepts and notations so introduced above we are now in
a position to establish the main result of this section.

Theorem 3.1. Given a natural Lagrangian density Lω on the k-jet
bundle Jk(Y/X) of a natural bundle p : Y → X of differential index 1,
one has:

(1) For each section s ∈ Γ(X,Y ) there exists an unique tensor
T (s) ∈ Γ(T ∗X ⊗

∧n−1 T ∗X) such that, for every Poincaré-
Cartan form Θ and vector field D ∈ X(X), one has:

(3.6) iDT (s) = µΘ(s)(D) + dα

where α is a (n− 2)-form on X depending on Θ, s and D.
(2) The tensor T (s) is explicitly given by:

(3.7) iDT (s) = −E(s)(σ(Ps)(D))

where E is the Euler-Lagrange operator of the variational prob-
lem, σ(Ps) is the symbol of the operator Ps associated to the
natural lifting D 7→ D̃, and the contractions are the obvious
ones.

(3) The assignation s ∈ Γ(X,Y ) 7→ T (s) ∈ Γ(T ∗X ⊗
∧n−1 T ∗X) is

Diff(X)-covariant, that is, for every diffeomorphism ϕ : X → X
one has:

T (ϕ̃∗s) = ϕ∗(T (s))

where ϕ̃ : Y → Y is the natural lifting of the diffeomorphism ϕ
to the bundle p : Y → X.
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Proof: Uniqueness. Let s ∈ Γ(X,Y ). If T (s) and T ′(s) satisfy (3.6)
for every Poincaré-Cartan form Θ and vector field D ∈ X(X), then, in
particular, fixing Θ, the tensor T = T (s)−T ′(s) ∈ Γ(T ∗X⊗

∧n−1 T ∗X)
satisfies that the (n− 1)-form iDT is closed for every D. Thus, for any
function f and vector field D, we have 0 = d(ifDT ) = df ∧ iDT .

Let T 1
1 (D) be the unique vector field such that iT 1

1 (D)ω = iDT

(ω being the volume element of X). Applying iT 1
1 (D) to the equal-

ity df ∧ ω = 0, we then have T 1
1 (D)(f) = 0 and, hence due to the

arbitrariness of f , we have that T 1
1 (D) = 0, and hence iDT = 0. Ac-

cordingly, bearing in mind the arbitrariness of D, we have that T = 0,
which implies T (s) = T ′(s).

Existence. We shall show that the tensor T (s) defined by formula (3.7)
satisfies (3.6) for every Poincaré-Cartan form Θ and vector field D ∈
X(X), thus proving the existence.

Since D̃ is an infinitesimal symmetry of the variational problem, by
making use of the variation formula (2.3) and bearing in mind that
θ1(D̃(2k−1)) ◦ E|j2k−1s = E(s)(Ps(D)) and formulas (3.3) and (3.4), we
have:

0 = LD̃(k)
Lω
∣∣∣
jks

= E(s)(Ps(D)) + d (iD̃(2k−1)
Θ)
∣∣∣
j2k−1s

(3.8)

= P+
s (E(s))(D) + d (E(s) (σ(Ps)(D)) + µΘ(s)(D))

Applying this equality to the vector fields D of compact support and
integrating over the manifold X, it follows that:∫

X

P+
s (E(s))(D) = 0, ∀D ∈ Xc(X)

Therefore, for every section s ∈ Γ(X, Y ), we have:

(3.9) P+
s (E(s)) = 0

Thus, returning to (3.8) the (n − 1)-form ωD
n−1 = E(s)(σ(Ps)(D)) +

µΘ(s)(D) is closed. Moreover, let us see that it is exact, which con-
cludes the proof of the first two assertions in Theorem 3.1.

Making use of the de Rham Theorem, it would suffice to see that the
integral of ωD

n−1 over the differential (n − 1)-simplices of X vanishes.
We shall prove that for any compact (n− 1)-submanifold S ⊂ X, one
has: ∫

S

ωD
n−1 = 0

Indeed, let {fi} be a partition of the unity subordinated to the cover
{Ui}, i = 1, . . . , h + 1, where Ui are charts in which S ∩ Ui is a hy-
perplane and Un+1 = X − S. We then have D =

∑
fiD, and hence
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ωD
n−1 =

∑
ωfiD

n−1, where ωfiD
n−1 are closed (n − 1)-forms of compact sup-

port contained in Ui. For each i = 1, . . . , h let Vi be a regular domain
in Ui such that Supp(ωfiD

n−1)∩∂Vi = Supp(ωfiD
n−1)∩S. In these conditions

we have: ∫
S

ωfiD
n−1 =

∫
S∩Ui

ωfiD
n−1 =

∫
∂Vi

ωfiD
n−1 =

∫
Vi

dωfiD
n−1 = 0

and so: ∫
S

ωD
n−1 =

h∑
i=1

∫
S

ωfiD
n−1 = 0.

Diff(X)-covariance. By the naturality of Lω, we have ϕ̃∗(k)Lω = Lω
and hence, bearing in mind the functoriality of the assignation Lω 7→
{Θ}Lω, if Θ is a Poincaré-Cartan form of the variational problem, then
ϕ̃∗(2k−1)Θ is a Poincaré-Cartan form as well. Let s ∈ Γ(X,Y ); applying

ϕ to (3.5), we have:

iϕ∗D[ϕ∗(T (s))] =
[
j2k−1(ϕ̃(s))

]∗ [
igϕ∗D(2k−1)

ϕ̃∗(2k−1)Θ
]

+ dϕ∗α =

=
[
µϕ̃∗

(2k−1)
Θ(ϕ̃(s))

]
(ϕ∗D) + dϕ∗α

and then it follows that ϕ∗T (s) = T (ϕ̃(s)) by the uniqueness of T (ϕ̃(s)).
�

Remark 3.2. If dimX = n = 1 and X is connected, the former
demonstration proves that in this case iDT (s) = µΘ(s)(D) for every
D ∈ X(X); that is, µΘ(s) is a 1-covariant 1-contravariant tensor on
X, independent of the chosen Poincaré-Cartan form Θ, whose explicit
expression is given by formula (3.7).

For dimX = n > 1 the fundamental equation (3.6) characteriz-
ing the Stress-Energy-Momentum tensor T (s) can be interpreted as a
“Belinfante-Rosenfeld formula”, from which this tensor is obtained by
adding to the value µΘ(s) ∈ HomR(X(X),Ωn−1(X)) of the multimo-
mentum map (which is not a tensor!) a “corrective term” given by the
last terms in the formula mentioned.

Another two very useful versions of the new concept are the following:
Using the volume element ω on X, T (s) can be expressed as a 1-

covariant tensor T 1
1 (s) by the formula:

iT 1
1 (s)(D)ω = iDT (s), D ∈ X(X).

In a more explicit way, if we write E(s) = E(s) ⊗ ω and note the
T ∗X-dependence on the symbol σ(Ps), then by formula (3.7), we have:

(3.10) T 1
1 (s)(D, η) = E(s)(σ(Ps)(D, η)), D ∈ X(X), η ∈ Ω1(X)
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where the contraction on the right hand side is that induced by duality
between the vector bundles s∗V (Y ) and s∗V ∗(Y ).

Furthermore, the assignation s 7→ T (s) induces a tensor T on J2k(Y/X)
by the rule:

(iD̄Tj2k
x s)(D̄

1, . . . , D̄n−1) =
(
i(p̄2k)∗D̄T (s)

)
((p̄2k)∗D̄

1, . . . , (p̄2k)∗D̄
n−1)

where D̄, D̄1, . . . , D̄n−1 ∈ Tj2k
x s(J

2k) and s is a representative of the

point j2k
x s ∈ J2k(Y/X).

By construction, T is a tensor on J2k, p̄2k-horizontal, skewsym-
metric in the variables D̄1, . . . , D̄n−1, invariant by the natural lifting
ϕ ∈ Diff(X) 7→ ϕ̃(2k) ∈ Aut(J2k), and fulfilling the universal property:
T (s) = (j2ks)∗T for each s ∈ Γ(X, Y ).

Thus, we associate in a canonical way a tensor TLω on J2k to the
Lagrangian density Lω on Jk with the previously mentioned properties,
that can be called the “universal Stress-Energy Momentum tensor” of
the variational problem.

By (2.4), its local expression is

TLω = −

 k∑
r=0

∑
|β|=r

(−1)rDβ ∂L
∂yi

β

Chi
k (dxk ⊗ ωh)

where Dβ = Dβ1

1 ◦· · ·◦Dβn
n , Di being the total derivative with respect to

xi (observe that [Di,Dj] = 0, which justifies the notation), and where
we agree that Dβ = Id for |β| = 0.

A first application of the present formalism is the actual Noether
Theorem for these kinds of variational problem.

From (3.7) it follows that, if the section s ∈ Γ(X, Y ) is critical, then
T (s) = 0, thus obtaining (by (3.6)):

(3.11) µΘ(s)(D) = −dα D ∈ X(X)

That is, the restriction of the Noether invariants iD̃(2k−1)
Θ to the

critical sections are not only closed forms (Noether’s Theorem) but,
moreover, exact.

Additionally, if the lifting D 7→ D̃ fulfills the additional condition
of being vertically transitive in the sense that for every point j1

xs ∈
J1(Y/X) one has {θ1

j1
xs(D̃)/D ∈ X(X)} = Vs(x)(Y ), then the reciprocal

holds, that is, the condition T (s) = 0 (equivalently, equation (3.11))
implies that the section s is critical.

Accordingly, the critical sections s ∈ Γ(X, Y ) are the solutions of the
equation T (s) = 0. Or –modulus exact (n− 1)-forms– the zero-level of
the multimomentum map µΘ : Γ(X, Y ) → HomR(X(X),Ωn−1(X)). In
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particular, the latter observation is of relevant interest for the study
of the presymplectic manifold of solutions of this kind of variational
problem.

We will finish this section with two examples that illustrate the gen-
eral result just obtained in a very clear way.

Example 1: First order problems.

Taking the usual Poincaré-Cartan form (2.7) for these problems, a
straightforward local calculation allows us to directly prove the equal-
ity:

iDT (s) = µΘ(s)(D) + d[Ω(σ(Ps)(D))]

where Ω is the momentum (n− 1)-form of the variational problem.
This is an attractive intrinsic expression of the Belinfante-Rosenfeld

formula, in which the corrective term is calculated in a very simple way
from the momentum form and the symbol of the natural lifting.

This gives, for our case, an alternative proof of the Main Theorem
(3.1), which is more in keeping with the proof given in [14].

Example 2: General Relativity.

As is well known, this theory is defined by a second order variational
problem on the bundle π : M → X4 of the Lorentzian metrics on an
oriented 4-dimensional manifold with Lagrangian density:

(Lω)j2
xg = π̄∗2 (R(g)ωg)x

where g ∈ Γ(X4,M) is a representative of the point j2
xg ∈ J2(M/X)

and R(g), ωg are the scalar curvature and volume element associated
to g.

For each metric g ∈ Γ(X4,M), the differential operator Pg between
the vector bundles TX4 and g∗V (M) = S2(T ∗X4) is given by:

(3.12) Pg(D) = −LDg = −Sd∇g(iDg), D ∈ X(X)

where ∇g is the Levi-Civita connection of g and S the symmetrization
operator.

From (3.12), it follows that the lifting D 7→ D̃ is vertically transitive,
and also the following formula for the symbol of Pg:

(3.13) σ(Pg)(Dx, ωx) = −S(ωx ⊗ iDxg), Dx ∈ TxX4

Let E = E2 ⊗ ωg ∈ Γ(X4, S
2(T ∗X4) ⊗

∧4 T ∗X4). Let us denote by
E1

1 and E2 the contraction of E2 with g and g ⊗ g, respectively. By
definition (3.3) of the adjoint operator (bearing in mind the classical
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formula div(E1
1 (D)) = (divg E2)(D) + trace(E1

1 ◦ d∇gD)), one obtains
the following expression for P+

g :

P+
g (E) = divg E2 ⊗ ωg

In particular, taking into account that the Euler-Lagrange operator
E : g ∈ Γ(X4,M) 7→ E(g) = E2(g) ⊗ ωg of the variational problem
that we are considering is the Einstein tensor of the metric g (that
is, E2(g) = Eins(g) = 2 Ric(g) − R(g)g), the fundamental identity
P+

s (E(s)) = 0 used in the proof of Theorem 3.1 (formula (3.9)) here
takes the form:

divg Eins(g) = 0

a well known equality of Riemannian Geometry that is known to be a
direct consequence of Bianchi’s second identity.

This observation is pertinent, because it allows us to interpret the
equality P+

s (E(s)) = 0 as a generalized “Bianchi’s identity” that must
be fulfilled by the sections of the natural bundles we are dealing with.

Using the metric g, we can also express the Stress-Energy-Momentum
tensor, T (g); as an order 2 tensor in three different ways: as a mixed
tensor T 1

1 (g) by the formula iT 1
1 (g)(D)ωg = iDT (g), as a 2-covariant

tensor T2(g), and as a 2-contravariant tensor T 2(g), constructed by
contractions of T 1

1 (g) with g and g−1, respectively. We have now the
following:

Proposition 3.3.
T2(g) = Eins(g)

Proof. From formula (3.10) (taken with respect to ωg), it follows that,
for every pair of vector fields D1, D2 ∈ X(X):

T2(g)(D1, D2) = T 1
1 (g)(iD1g,D2) = −E2(g)(σ(Pg)(D2, iD1g)) =

= E2(g) [S(iD1g ⊗ iD2g)] = E2(g)(iD1g, iD2g)

= E2(g)(D1, D2) = Eins(g)(D1, D2)

�

Finally, taking the usual Poincaré-Cartan form Θ of second order
variational problems (which in this case is known to be projectable to
J1(Y/X)), we can directly prove that (see Proposition 3.1 of [5]):

iDT (g) = µΘ(g)(D) +
(
d∇gD · ωg

)
which, as in Example 1, refines the fundamental equality (3.6) giving
the term in the exact differential explicitly.

In particular, in this case this formula gives another proof of the
Main Theorem, as well as a direct demonstration of the fact that the
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set of critical sections of the variational problem (Einstein metrics)
coincides with the zero-level of the multimomentum map.

4. Metric parametrized Lagrangian densities

In this section we shall deal with the special important case of natural
Lagrangian densities Lω on the k-jet bundles Jk(M×X Y ) of fibred
products π × p : M ×X Y → X where π : M → X is a bundle of
non-singular metrics of given signature on a n-dimensional oriented
manifold X, p : Y → X a natural bundle with differential index ≤ 1
and where the natural lifting of vector fields from X(X) to M×X Y
has the form: D 7→ D̃ = (D̃M, D̃Y ), where D 7→ D̃M and D 7→ D̃Y are,
respectively, the natural liftings from X(X) to the bundle of metrics
M and the natural bundle Y .

The Lagrangian density Lω can be expressed in the form LωM, where
L ∈ C∞(Jk(M×X Y )) is a function, invariant by the natural action of
Diff(X) over Jk(M×X Y ), and ωM is the π × p-horizontal n-form on
M×X Y defined by the formula

(4.1) (ωM)(gx,yx)(D̄
1, . . . , D̄n) = ωg((π × p)∗D̄

1, . . . , (π × p)∗D̄
n)

where ωg is the volume element canonically associated to the oriented
metric space (TxX, gx).

The basic observation that justifies the denomination given to this
section is the following:

For each metric g ∈ Γ(X,M), if we consider (ig)(k) : J
k(Y/X) →

Jk(M ×X Y ), the k-jet extension of the immersion of bundles over
X ig : Y → M ×X Y defined by ig(y) = (g(p(y)), y), y ∈ Y , then
(ig)

∗
(k)(LωM) = Lgωg (Lg = (ig)

∗
(k)L ∈ C∞(Jk(Y/X))) defines a La-

grangian density on Jk(Y/X).
We therefore have a family of variational problems {Lgωg} on Jk(Y/X),

g going through Γ(X,M), which, by construction, are invariant by the
natural action of the subgroups G(g) ⊆ Diff(X) of the isometries of g
(or, infinitesimally, by the natural action of the real Lie algebras X(g)
of the Killing fields of g).

Definition 4.1. The Stress-Energy-Momentum tensor of the varia-
tional problem Lgωg on Jk(Y/X) is the correspondence that assigns
to each section s ∈ Γ(X, Y ) the tensor Tg(s) = T (g, s), where T (g, s)
is the Stress-Energy-Momentum tensor corresponding to the section
(g, s) ∈ Γ(X,M×XY ) of the variational problem LωM on Jk(M×XY ).
Analogously, using ωg, g and g−1, (Tg)

1
1, (Tg)2 and (Tg)

2 are defined
from T 1

1 , T2 and T 2 respectively.
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Remark 4.2. If s ∈ Γ(X, Y ) is a critical section of the Lagrangian
density Lgωg, where g is a metric such that (g, s) ∈ Γ(X,M×X Y )
is not critical for the Lagrangian density LωM, then the tensor Tg(s)
does not necessarily vanish. This is the situation usually present in the
applications. The restriction of the Stress-Energy-Momentum tensor
Tg to such critical sections therefore constitutes a family of non-trivial
tensors.

The question is now the following: How are the variational problems
Lgωg on Jk(Y/X) and LωM on Jk(M×X Y ) related by the immersion
ig : Y →M×X Y ?. In particular, how are the properties of the tensor
T reflected on Tg?.

Let (g, s) ∈ Γ(X,M×X Y ). By means of the identification of the
vertical bundle (g, s)∗V ∗(M×X Y ) = S2(TX) ⊕ s∗V ∗(Y ), the Euler-
Lagrange operator E of the variational problem LωM can be decom-
posed in the form:

(4.2) E : (g, s) ∈ Γ(X,M×XY ) 7→ E(g, s) =
[
E2
M(g, s), EY (g, s)

]
⊗ωg.

In these conditions, it is immediate from the local formula (2.4) that,
for each metric g ∈ Γ(X,M), the correspondence:

(4.3) (EY )g : s ∈ Γ(X, Y ) 7→ EY (g, s)⊗ ωg

coincides with the Euler-Lagrange operator of the variational problem
Lgωg.

The Euler-Lagrange operator (EY )g and E of both problems are thus
ig-related.

Regarding the respective families {Θ}Lgωg and {Θ}LωMof Poincaré-
Cartan forms, we have the following generalization to the morphism
ig : Y →M×X Y of the functoriality property established in §2:

Proposition 4.3.

(4.4) (ig)
∗
(2k−1) : {Θ}LωM → {Θ}Lgωg

Proof. Let Θ be a Poincaré-Cartan form of the variational problem
LωM on J2(M×X Y ). By the formulas (2.2) and the identifications(

V J l(M×X Y )
)

Jm =
(
V J l(M)⊕ V J l(Y )

)
Jm l ≤ m

(which also holds for the dual functor V ∗), the differential forms Θ and
dΘ can be decomposed as follows:

Θ = (θk
M, θ

k
Y )∧̄(ΩM,ΩY ) + LωM

dΘ = (θ1
M, θ

1
Y )∧̄(EM,EY ) + (θk

M, θ
k
Y )∧̄

[
(θk−1
M , θk−1

Y )∧̄(ηM, ηY )
]
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Applying (ig)
∗
(2k−1) to these expressions, bearing in mind that, for

every l, (ig)
∗
(l)θ

l
M = 0, and (ig)

∗
(l)θ

l
Y coincides with the structure 1-form

of J l(Y/X) (which we will continue to denote θl
Y ), we have:

(ig)
∗
(2k−1)Θ = θk

Y ∧̄(ig)
∗
(2k−1)ΩY + Lgωg

d(ig)
∗
(2k−1)Θ = θ1

Y ∧̄(ig)
∗
(2k−1)EY + θk

Y ∧̄(θk−1
Y ∧̄(ig)

∗
(2k−1)ηY )

which proves, again by (2.2), that (ig)
∗
(2k−1)Θ is a Poincaré-Cartan form

of the variational problem Lgωg on Jk(Y/X). �

Remark 4.4. Analogously, it can be proved, by adapting the functo-
riality proof given in [25] to the morphism ig : Y → M ×X Y , that
if Θ∇ is the Poincaré-Cartan form of LωM corresponding to a linear
connection ∇ on X, then (ig)

∗
(2k−1)Θ∇ is the poincaré-Cartan form of

Lgωg corresponding to the same connection. From here the bijection
follows:

(4.5) (ig)
∗
(2k−1) : {Θ∇}LωM

∼→{Θ∇}Lgωg

In particular, if Θg is the Poincaré-Cartan form of the variational
problem Lgωg on Jk(Y/X), defined by the Levi-Civita connection ∇g

associated to g, then it holds that Θg = (ig)
∗
(2k−1)Θ∇g , where Θ∇g is the

Poincaré-Cartan form of the variational problem LωM on Jk(M×X Y )
defined by the same connection.

In the case of (k ≤ 2)-order variational problems over manifolds
of arbitrary dimensions or, for any k, over 1-dimensional manifolds,
the former argument demonstrates that (ig)

∗
(2k−1) transforms the cor-

responding canonical Poincaré-Cartan forms (2.6) into the other one,
which on the other hand, can be immediately deduced from the local
expressions for these forms simply by observing that the total deriva-
tives D∞

j on J∞(M×X Y ) and (DY )∞j on J∞(Y/X) are (πg)∞-related.

The development followed in Example 2 of the previous section (Gen-
eral Relativity) can be extended to the variational problem LωM on
Jk(M×X Y ) in the following way:

For each section (g, s) ∈ Γ(X,M×X Y ), the differential operator
P(g,s) between TX and (g, s)∗V (M×X Y ) = S2(TX) ⊗ s∗V (Y ) asso-

ciated to the natural lifting D 7→ D̃ = (D̃M, D̃Y ) is given, on account
of (3.12), by the formula:

(4.6) P(g,s)(D) =
[
−Sd∇g(iDg), (PY )s(D)

]
, D ∈ X(X)

where (PY )s is the differential operator between TX and s∗V (Y ) asso-
ciated to the natural lifting D 7→ D̃Y and to the section s ∈ Γ(X, Y ).
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It follows from (4.6) and (3.13) that the symbol of P(g,s) is

(4.7) σ(P(g,s))(Dx, ωx) = [−S(ωx ⊗ iDxg), σ(PY )s(Dx, ωx)]

where Dx ∈ TxX and ωx ∈ T ∗xX.
Additionally, if E = (E2

M, EY ) ⊗ ωg considered as a section of the
bundle [S2(TX)⊕ s∗V ∗(Y )]⊗

∧n T ∗X → X then:

(4.8) P+
(g,s)(E) = divg(EM)2 ⊗ ωg + (PY )+

s (EY ⊗ ωg)

In particular, applying P+
(g,s) to the value E(g, s) of the Euler-Lagrange

operator (4.2) of the variational problem LωM on Jk(M×X Y ), the
Bianchi’s identity is obtained:

(4.9) (divg(EM)2(g, s))⊗ ωg = −(Py)
+
s ((EY )g(s)⊗ ωg)

where (EY )g is the Euler-Lagrange operator (4.3) of the variational
problem Lgωg on Jk(Y/X). From these formulas, the Stress-Energy-
Momentum tensor (Tg)

1
1 of the variational problem Lgωg on Jk(Y/X)

can be calculated as follows:

Theorem 4.5.

(4.10) (Tg)
1
1(s) = (EM)1

1(g, s)− (EY )g(s) · σ(PY )s

where σ(PY )s is considered as an 1-covariant, 1-contravariant tensor
and the product “·” is taken with respect to the duality between s∗V ∗(Y )
and s∗V (Y ).

Proof. By definition (4.1) and formula (3.10) it follows that for every
vector fields D1, D2 ∈ X(X):

(Tg)
1
1(s)(iD1g,D2) = (T 1

1 (g, s))(iD1g,D2) =

=−
[
E2
M(g, s), (EY )g(s)

]
[−S(iD1g ⊗ iD2g), σ(PY )s(iD1g,D2)] =

=E2
M(g, s)(iD1g, iD2g)− (EY )g(s)(σ(PY )(iD1g,D2)) =

=(EM)1
1(g, s)(iD1g,D2)− [(EY )g(s) · σ(PY )s] (iD1g,D2) =

=
[
(EM)1

1(g, s)− (EY )g(s) · σ(PY )s

]
(iD1g,D2)

�

Corollary 4.6 (Hilbert’s Formula). If s ∈ Γ(X, Y ) is a critical section
for the variational problem Lgωg on Jk(Y/X), or if the natural lifting

D 7→ D̃Y has differential index 0, one has:

(Tg)2(s) = (EM)2(g, s) =
δL(g, s)ωM

δg

where the last term is intended with the classical notation. In particu-
lar, the tensor (Tg)2(s) is symmetric.
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Proof. It suffices to apply formula (4.10), taking into account that in
the first case (EY )g(s) = 0 and in the second one σ(PY )s = 0. �

Corollary 4.7 (Divergence formula).

(divg(Tg)2(s))⊗ ωg = −(PY )+
s [(EY )g(s)⊗ ωg]−

− divg [(EY )g(s) · σ(PY )s]⊗ ωg

In particular, if s ∈ Γ(X, Y ) is a critical section of the variational
problem Lgωg on Jk(Y/X), the divg(Tg)2(s) = 0.

Proof. It suffices to apply divg to the formula (4.10) bearing in mind
Bianchi’s identity (4.9). If s ∈ Γ(X,Y ) is a critical section of the
variational problem Lgωg on Jk(Y/X) then (EY )g(s) = 0, and this
yields divg(Tg)2(s) = 0. �

Finally, the fundamental formula (3.6) characterizing the Stress-En-
ergy-Momentum tensor T , admits a translation to the tensors Tg, pro-
ceeding as follows:

Lemma 4.8. Let D ∈ X(X). The necessary and sufficient condition
for the natural liftings D̃Y and D̃ to be ig-related by the immersion
ig : Y →M×X Y is D ∈ X(g).

Proof. Let y ∈ Y and s ∈ Γ(X, Y ) such that s(x) = y. Considering the

isomorphism ϕ : S2T ∗X ⊕ s∗V (Y )
∼→(g, s)∗V (M×X Y ), one has:

D̃ig(y) = D̃(g,s)(x) = d(g, s)xDx + (D̃v
(g,s))(g,s)(x) =

= d(g, s)xDx + ϕ
[
(−LDg, (D̃Y )v

s

]
(g,s)(x)

=

= d(g, s)xDx − [ϕ(LDg)](g,s)(x) +
[
ϕ(D̃Y )v

s

]
(g,s)(x)

=

= (dig)y

{
(ds)xDx +

[
(D̃Y )v

s

]
y

}
− [ϕ(LDg)](g,s)(x) =

= (dig)y(D̃Y )y − [ϕ(LDg)](g,s)(x)

so (dig)y(D̃Y )y = D̃ig(y) for every y ∈ Y if and only if LDg = 0. �

Theorem 4.9. Let Θ be any Poincaré-Cartan form of the G(g)-invariant
variational problem Lgωg on Jk(Y/X) such that Θ = (ig)

∗
(2k−1)Θ̄, where

Θ̄ is a Poincaré-Cartan form of the Diff(X)-invariant variational prob-
lem LωM on Jk(M×X Y ).

If µΘ : Γ(X,Y ) → HomR(X(g),Ωn−1) is the multimomentum map
corresponding to the form Θ and the group of symmetries G(g), then
for the Stress-Energy-Momentum tensor Tg we have:

(4.11) iDTg(s) = µΘ(s)(D) + dα, s ∈ Γ(X, Y ), D ∈ X(g)
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where α is a (n− 2)-form on the manifold X.

Proof. Given (g, s) ∈ Γ(X,M×X Y ), let us see that, for every D ∈
X(g), µΘ̄(g, s)(D) = µΘ(s)(D) holds. Indeed, given any point x ∈ X,
by Lemma 4.8 and the equality Θ = (ig)

∗
(2k−1)Θ̄, one has:

[µΘ̄(g, s)(D)]x =
[
(g, s)∗(2k−1)

(
iD̃(2k−1)

Θ̄
)]

x
= i((D̃Y )(2k−1))s(2k−1)(x)

Θ =

=
(
s∗(2k−1)i(D̃Y )(2k−1)

Θ
)

x
= (µΘ(s)(D))x

From here by Definition 4.1 and the fundamental formula (3.6), it fol-
lows that:

iDTg(s) = iDT (g, s) = µΘ̄(g, s)(D) + dα

�

Remark 4.10. By the equality (4.11), for every D ∈ X(g), the function
s ∈ Γ(X, Y ) 7→ s∗(2k−1)(iD̃(2k−1)

Θ) defined on the set of sections Γ(X, Y )

by the Noether invariant iD̃(2k−1)
Θ corresponding to the infinitesimal

symmetry D̃ of the variational problem Lgωg on Jk(Y/X) is given
in terms of the Stress-Energy-Momentum tensor Tg by the formula:
s ∈ Γ(X, Y ) 7→ iDTg(s)− dα.

In Particular, for X = R4 with the Minkowski metric g0, applying
the previous considerations to the translations ∂/∂xi of the real Lie
algebra X(g0) of the Poincaré-Group G(g0), one has:

(4.12) T j
i (s) = tji (s) +∇lK

jl
i

where

i ∂
∂xi

= T j
i (s)ωi, s∗

[
i ∂̃

∂xi (2k−1)

Θ

]
= tji (s)ωj and α = Kjl

i i ∂
∂xl

i ∂
∂xj

ω

In the case of first order variational problems and taking the usual
Poincaré-Cartan form for them, in the classical literature tji is called the
“canonical tensor” of the corresponding field Theory, (4.12) being the
formula that originally allowed Belinfante to obtain a “Stress-Energy-
Momentum tensor”, T j

i , “correcting” the canonical tensor tji by means

of an additive term ∇lK
jl
i of “divergence type” (see [2]).

5. Examples

The two examples we offer in this section have a common charac-
teristic. They are (≤ 2)-order variational problems parametrized by
metrics defined by certain (≤ 1)-order constrained variational prob-
lems. See [5, 9] for a general setup for this kind of problems.
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Example 3: Electromagnetic Field.

As is well known, in its version with potentials, this theory is defined
as a variational problem on J1(M×X4 T

∗X4), where π : M → X4 is
the bundle of Lorentzian metrics on an oriented 4-dimensional manifold
X4, p : T ∗X → X4 is the bundle of “electromagnetic potentials”, and
the Lagrangian density is given by the formula:

(5.1) (Lω)j1
x(g,A) =

1

2
‖dxA‖2

gωgx

where (g, A) ∈ Γ(X4,M ×X4 T
∗X) is a representative of the point

j1
x(g, A), and ‖ ‖g and ωg are the norm and the volume element asso-

ciated to g respectively.
By the usual interpretation of the sections F ∈ Γ(X4,

∧2 T ∗X) as
“field intensities”, we can consider this variational problem as the pull-
back by the submersion

ϕ : j1
x(g, A) ∈ J1(M×X4 T

∗X) 7→ (gx, (dA)x) ∈M×X4

∧2
T ∗X

of the variational problem onM×X4

∧2 T ∗X defined by the Lagrangian
density (L̄ω)(gx, Fx) = 1/2‖Fx‖2

gωgx , where the sections (g, F ) of the

bundle M×X4

∧2 T ∗X → X4 verify the constraint condition dF = 0
(first group of Maxwell equations), and where the notion of “station-
ariness” is taken with respect to the constraint-preserving “variations”
δtg = g + tg′, δtF = F + tdA′, g′ and A′ being an arbitrary metric and
a 1-form on X4, respectively.

Applying the results from the previous section to the Lagrangian
density (5.1), we have the following: Let (g, A) ∈ Γ(X4,M×X4 T

∗X).
Using the identification (g, A)∗V ∗(M×X4 T

∗X) = S2(TX4) ⊕ TX4, a
straightforward local calculation proves that the Euler-Lagrange oper-
ator E of the variational problem (5.1) can be decomposed in the form:
E : (g, A) 7→ [E2

M, ET ∗X4(g, A)]⊗ ωg where:

E2
M(g, A) =

(
1

4
gijghkglmFhlFkm − F i

l F
jl

)
dxi ⊗ dxj =(5.2)

=
1

2
‖F‖2

gg
−1 − F 1

1 · F 2

ET ∗X4(g, A) =− 1√
− det g

∑
j

∂

∂xj

(√
− det gF ji

)
dxi =(5.3)

−− divg F
2

with F = dA.
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By (4.3), for each metric g, the Euler-Lagrange operator defined
by (5.1) on T ∗X4 is:

(5.4) (ET ∗X4)g : A ∈ Γ(X4, T
∗X4) 7→ (divg F

2)⊗ ωg

On the other hand, the 2-forms F such that dF = 0, divg F
2 = 0 are

the critical sections of the constrained variational problem on
∧2 T ∗X4

considered at the beginning of the example.
Thus, both variational problems (the free, first order one on the

“bundle of potentials” T ∗X4 and the constrained zero order one on the
“bundle of field intensities”

∧2 T ∗X4) are ϕ-related by the submersion:

ϕ : j1
xA ∈ J1(T ∗X4) → (dA)x ∈

2∧
T ∗X4

Let us now see the expression for the formulas (4.6), (4.7) and (4.8)
and for the Bianchi’s identity (4.9) in this case. In order to obtain them,
it suffices to substitute in these formulas the respective expressions of
(PT ∗X4)A, σ(PT ∗X4)A and (PT ∗X4)

+
A. Applying the definitions in §3, one

obtains:
(PT ∗X4)A (D) = −LDA, D ∈ X(X4)

[σ(PT ∗X4)A] (Dx, ωx) = −Ax(Dx)ωx, Dx ∈ TxX4 ωx ∈ T ∗xX4

(PT ∗X4)
+
A (ET ∗X4 ⊗ ωg) =

[
iET∗X4

dA+ (divg ET ∗X4)A
]
⊗ ωg

with ET ∗X4 ⊗ ωg ∈ Γ(X4, TX4 ⊗
∧4 T ∗X4).

In particular, bearing in mind (5.3), formula (4.9) for the Bianchi’s
identity in this case takes the form:

(5.5) divg(EM)2(g, A) = idivg FF

where (EM)2(g, A) is the 2-covariant expression of the tensor defined
by the formula (5.2).

For the 2-covariant expression of the Stress-Energy-Momentum ten-
sor, Theorem 4.4 gives:

(Tg)2(A) = (EM)2(g, A)− A⊗ divg F

This tensor therefore coincides with the one defined by the Hilbert
formula (Corollary 4.5) only over the critical sections (that is, when
divg F = 0). In this case, one obtains the well known formula:

(Tg)2(A) = (EM)2(g, A) =
1

2
‖F‖2

gg − F 1
1 · F2

which is solely expressed in terms of the field intensities.
Regarding the divergence formula (Corollary 4.6), this takes the

form:
divg(Tg)2(A) = idivg FF − divg(A⊗ divg F )
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Finally, since this is a first order variational problem, on applying
the results of Example 1 to the corresponding momentum (n− 1)-form
Ω, the corrective Belinfante-Rosenfeld term of the formula (4.11) takes
the form:

dα = d [Ω(σ(PT ∗X4)A(D))] = −d
(
A(D)F 2 · ωg

)
, D ∈ X(g)

where “·” denotes the contraction of the two indices of F 2 with the
volume element ωg.

Example 4: Non perfect relativistic fluids.

In this example, the bundle T ∗X4 of the previous example is re-
placed by the bundle Y = X4 ×M3, the direct product of X4 with a
3-dimensional manifold, oriented by a volume element η3 maintaining
the bundle π : M→ X4 of Lorentzian metrics on X4 as the parametriz-
ing space.

In fact, this is the starting point of the variational theory of rela-
tivistic perfect fluids by Kijowski, Pawlik and Tulczyjew [17], which is
based on the following construction:

Let ϕ : J1(M×X4 Y ) → M×X4 TX4 be the morphism of natural
bundles over X4 defined by the formula:

(5.6) ϕ : j1
x(g, f) ∈ J1(M×X4 Y ) 7→

[
gx, i∗g(f∗η3)xg

−1
]
∈M×X4 TX4

where f : X4 → M3 on the right hand side must be understood using
the natural identification Γ(X4, Y ) = Map(X4,M3) and where ∗g is the
Hodge operator with respect to the metric g.

Considering the open subbundle of M×X4 TX4 defined by the pairs
(gx, Dx), where Dx is a time-like, future-pointing tangent vector with
respect to the metric gx, and the subbundle of J1(M×X4Y ) obtained by
applying ϕ−1 to the previous subbundle (for simplicity we shall continue
to denote them as their respective ambient bundles), the Lagrangian
density of the perfect relativistic fluids is defined by ϕ∗(LωM), where
L : M×X4 TX4 → R is a function invariant by the natural action of
Diff(X4) on M×X4 TX4. That is:

L : (gx, Dx) ∈M×X4 TX4 7→ L(
√
−‖Dx‖2

gx
)

with L : R+ → R an arbitrary differentiable function.
The variational problem defined by ϕ∗(LωM) on J1(M×X4 Y ) con-

stitutes the “Lagrangian” formulation of the relativistic perfect fluids
proposed in [17], while the “Eulerian” version of these fluids is given by
the variational problem on M×X4 TX4 of Lagrangian density LωM,
where the sections (g,D) ∈ Γ(X4,M×X4 TX4) fulfill the constraint
condition divg D = 0 (continuity equation) and where the notion of
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“stationariness” is taken with respect to the “variations” preserving
the constraint

δtg = g + tg′, δtD = D + t
{
[D,D′]−

(
divg D

′ + g−1 · g′
)
D
}

g′ and D′ being an arbitrary metric and a vector field on X4, respec-
tively.

The analogy with the previous example is evident: D represents a

fluid on the Lorentzian manifold (X4, g) of mass density ρ =
√
−‖D‖2

g

and field of velocities U = D/ρ, while the functions f : X4 → M3 are
interpreted as a special kind of “hydrodynamic potentials” that solve
the continuity equation (note that from dη3 = 0 follows the equality
divg(∗g(f

∗η3)) = 0).

Remark 5.1. The former analogy becomes closer if we take as the
space of “Eulerian variables” M×X4

∧3 T ∗X4 instead of M×X4 TX4,
whereby the continuity equation transforms into dF3 = 0 on the sec-
tions (g, F3) ∈ Γ(X4,M×X4

∧3 T ∗X4). The relation with the standard
formulation is established by the vector bundle isomorphism:

(gx, Dx) ∈M×X4 TX4 7→ (gx, iDxωx) ∈M×X4

∧3
T ∗X4.

The morphism that relates this formulation with the potential theory
is:

j1
x(g, f) ∈ J1(M×X4 Y ) 7→ (gx, (f

∗η3)x) ∈M×X4

∧3
T ∗X4.

which, for the computations is much simpler than the one defined by
formula (5.6) (this new setting can be found in [5]).

If we consider the natural prolongation ϕ̄ : J2(M×X4Y ) → J1(M×X4

TX4) of the morphism (5.6) defined by the formula:

(5.7) ϕ̄ : j2
x(g, f) ∈ J2(M×X4Y ) 7→ j1

x(ϕ◦j1(g, f)) ∈ J1(M×X4TX4)

the previous theory can be generalized, taking as Lagrangian an arbi-
trary function L : J1(M×X4TX4) → R, invariant by the natural action
of Diff(X4) on J1(M×X4 TX4).

The variational problem defined by ϕ̄(LωM) on J2(M ×X4 TX4)
would be the “Lagrangian” version of a theory of “non perfect rela-
tivistic fluids”, whose “Eulerian” formulation would be given by the
variational problem on J1(M×X4 TX4) of Lagrangian density LωM
with the same constraint and notion of stationariness for the sections
(g,D) ∈ Γ(X4,M×X4 TX4) considered for the perfect fluids.

Applying the general theory to this case we will have the following:
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Let (g, f) ∈ Γ(X4,M ×X4 Y ). Making use of the identification
(g, f)∗V ∗(M×X4 Y ) = S2TX4

⊕
f ∗T ∗M3, the Euler-Lagrange opera-

tor E of the variational problem on J2(M×X4Y ) of Lagrangian density
ϕ̄∗(LωM) decomposes in the form E : (g, f) 7→ [E2

M(g, f), EY (g, f)]⊗ωg.
Analogously, given a section (g,D) ∈ Γ(X4,M×X4 TX4), the iden-

tification (g, f)∗V ∗(M×X4 TX4) = S2TX4

⊗
T ∗X4 allows us to de-

compose the Euler-Lagrange operator Ê of the variational problem on
J1(M×X4 TX4) of Lagrangian density LωM (considered as an uncon-
strained problem) in the form:

Ê : (g,D) 7→
[
Ê2
M(g,D), ÊTX4(g,D)

]
⊗ ωg

With these conditions, a fundamental result holds:

Proposition 5.2 ([5]).

(5.8) E2
M(g, f) = Ê2

M(g,D)−
[
iDÊTX4(g,D)

]
g−1

(5.9) f ∗EY (g, f) = iDdÊTX4(g,D)

where D = i∗g(f∗η3)g
−1.

Proof. The proof given in [5] is very simple: it is based on a comparison
of the formulas of variation for the free variational problem ϕ̄∗(LωM)
on J2(M ×X4 Y ) and the constrained variational problem LωM on
J1(M×X4 TX4) on two sections (g, f) and (g,D = i∗g(f∗η3)g

−1) of each
bundle, related by the morphism ϕ̄.

Another way to demonstrate these formulas, without using Varia-
tional Calculus with constraints, is simply by local computations. Let
us sketch this procedure.

Let (xi), i = 1, . . . , 4 be a local coordinate system on X4, (xi, gij, y
i)

the coordinates induced on M ×X4 TX4, and (zα), α = 1, 2, 3 uni-
modular local coordinates on M3 with respect to η3. If gij = gij(x),
zα = zα(x) are the equations of a section (g, f) ∈ Γ(X4,M×X4Y ), then
the equations of ϕ(j1(g, f)) = (g, i∗g(f∗η3)g

−1) ∈ Γ(X4,M×X4 TX4) are
gij = gij(x), y

h = yh(x), with:

(5.10) yh(x) =
1√

− det g
(−1)h−1

∣∣∣∣∣∣
z1
1(j

1
xϕ) · · · z1

4(j
1
xϕ)

. . . . . . . . . . . . . . . . . . . . .
z3
1(j

1
xϕ) · · · z3

4(j
1
xϕ)

∣∣∣∣∣∣
ĥ

where ĥ denotes that the h-th column is ommited and zi
h(x) = ∂zi(x)

∂xh
.
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If we derive yh(x) with respect to xk, we have

(5.11)
∂yh(x)

∂xk

= −gst(x)yh(x)
∂gst(x)

∂xk

+

+
1√

− det g
(−1)h−1 ∂

∂xk

∣∣∣∣∣∣
z1
1(j

1
xϕ) · · · z1

4(j
1
xϕ)

. . . . . . . . . . . . . . . . . . . . .
z3
1(j

1
xϕ) · · · z3

4(j
1
xϕ)

∣∣∣∣∣∣
ĥ

Formulas (5.10) and (5.11) give the equations of the morphism ϕ̄ simply
by substitution of the “derivatives” appearing in them by “jet coordi-
nates” (that is, ∂gst/∂xk 7→ gst

k , ∂yh/∂xk 7→ yh
k , ∂zα/∂xk 7→ zα

k and
∂2zα/(∂xk∂xs) 7→ zα

(k,s)).

If L(gij, y
h, gst

k , y
h
k )dx1∧· · ·∧dx4 is the local expression of LωM, these

expressions allow us to explicitly compute the left hand side of (5.8)
and (5.9) merely by applying the chain rule to the corresponding ex-
pressions obtained for ϕ̄∗(LωM) = (ϕ̄∗L)dx1 ∧ · · · ∧ dx4.

For E2
M(g, f) =

∑
i≤j E

ij
M

∂
∂xi

· ∂
∂xj

, we shall have:

√
− det gE ij

M =
∂ϕ̄∗L
∂gij

− ∂

∂xl

(
∂ϕ̄∗L
∂gij

l

)
=

=
∂L
∂gij

+
∂L
∂yh

∂yh

∂gij

+
∂L
∂yh

k

∂yh
k

∂gij

− ∂

∂xl

(
∂L
∂gij

l

+
∂L
∂yh

k

∂yh
k

∂gij
l

)
Computing the derivative of yh with respect to gij in (5.10), one has
∂yh/∂gij = −gijyh, and analogously, the derivatives of yh

k with respect

to gij and gij
l in (5.11) are:

∂yh
k

∂gij

= − ∂

∂xk

(gijyh),
∂yh

k

∂gij
l

= −gijyhδk
l

Hence, substituting in
√
− det gE ij

M, we shall have:√
− det gE ij

M =
∂L
∂gij

− gijyh ∂L
∂yh

− ∂L
∂yh

k

∂

∂xk

(
gijyh

)
− ∂

∂xl

(
∂L
∂gij

l

)

+
∂

∂xl

(
∂L
∂yh

k

)
gijyh +

∂L
∂yh

l

∂

∂xl

(
gijyh

)
=

=
√
− det g

(
(ÊM)ij −

[
iDÊTX4(g,D)

]
gij
)

which proves the equality (5.8) of the Proposition.
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Making a similar computation (longer, as more successive derivatives
appear), one obtains the proof of (5.9).

�

Remark 5.3. For each metric g, the Lagrangian densities ϕ̄∗(LωM) and
LωM define on J2(Y ) and J1(TX4) a (free) second order variational
problem and a (constrained) first order variational problem, respec-
tively. In [5] it is proved that the equations of the critical sections for

the second problem are: divg D = 0, iDdÊTX4(g,D) = 0. Therefore,
by Proposition (5.2), both variational problems are ϕ̄g-related by the
morphism ϕ̄g : f ∈ Γ(X4, Y ) 7→ D = i[∗g(f∗η3)]g

−1.

In the case of the perfect fluids (that is, when the Lagrangian density
is LωM = L(ρ)

√
− det gdx1 ∧ . . . ∧ dx4), formulas (5.8) and (5.9) give

the classical expressions of this theory. Indeed:

ÊTX4(g,D) =
∑

j

Êjdxj =
∑

j

1√
− det g

∂(L(ρ)
√
− det g)

∂yj
dxj =

=
L′(ρ)
ρ

iDg

Ê2
M(g,D) =

∑
i≤j

Ê ij ∂

∂xi

· ∂

∂xj

=
∑
i≤j

1√
− det g

∂(L(ρ)
√
− det g)

∂gij

∂

∂xi

· ∂

∂xj

=
∑
i≤j

(
∂L(ρ)

∂gij

+
1√

− det g
L(ρ)

∂
√
− det g

∂gij

)
∂

∂xi

· ∂

∂xj

=
∑
i≤j

(
L′(ρ) ∂ρ

∂gij

+ L(ρ)gij

)
∂

∂xi

· ∂

∂xj

=
∑
i≤j

(
−L

′(ρ)

ρ
yiyj + L(ρ)gij

)
∂

∂xi

· ∂

∂xj

=− L′(ρ)
ρ

D ⊗D + L(ρ)g−1

Hence, substituting in (5.8) and (5.9), one obtains, respectively:

E2
M(g, f) =

−L′(ρ)
ρ

D ⊗D + (L(ρ)− ρL′(ρ))g−1

f ∗EY (g, f) = iDd

[
L′(ρ)
ρ

iDg

]
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In particular, the Eulerian expression of the second group of field
equations for the perfect fluid is:

(5.12) iDd

[
L′(ρ)
ρ

iDg

]
= 0

which, setting L(ρ) = −ρ(1 + ε(ρ)) as usual and defining p = ρ2 d(ε(ρ))
dρ

and µ(ρ) = −L(ρ), takes the well known form:

(5.13) U(p)ωU + dp+ (µ+ p)U∇ωU = 0

where U = D
ρ
, ωU = iUg and ∇ is the Levi-Civita connection of g.

Returning to the general case, since the lifting D 7→ D̃Y of vector
fields of X(X4) to the bundle Y = X4 ×M3 is the trivial one, then for
every f : X4 →M3 the operators (PY )f and (PY )+

f are homomorphisms
of vector bundles, and hence σ(PY )f = 0. More explicitly, one has:

[(PY )f (D)]x = (df)xDx, D ∈ X(X4) x ∈ X4

σ(PY )f (Dx, ωx) = 0, Dx ∈ TxX4 ωx ∈ T ∗xX4

(PY )+
f (EY ⊗ωg)x = (EY )x⊗ (ωg)x, EY ⊗ωg ∈ Γ(X4, f

∗T ∗M3⊗
4∧
T ∗X4)

In particular, bearing in mind (5.9), formula (4.9) for the Bianchi’s
identity in this case takes the form:

divg(EM)2(g, f) = −iDdÊTX4(g,D)

where (EM)2(g, f) is the 2-covariant expression of the tensor given by
formula (5.8).

On the other hand, since σ(PY ) = 0, Hilbert’s formula (Corol-
lary 4.6) yields:

(5.14) (Tg)2(f) = (EM)2(g, f) = (ÊM)2(g,D)− [iDÊTX4(g,D)]g

In particular, for perfect fluids one has the well known expression for
their Stress-Energy-Momentum tensor:

(5.15) (Tg)2(f) =
−L′(ρ)
ρ

ωD ⊗ ωD + [L(ρ)− ρL′(ρ)]g

Regarding the divergence formula (Corollary 4.6), again by σ(PY ) =
0, one obtains:

(5.16) divg(Tg)2(f) = −iDdÊTX4(g,D)

In particular, this equation implies, by (5.9), that for the submersions
f : X4 → R3, the critical sections of the variational problem defined by
ϕ̄∗(LωM) on J2(Y ) fixing the metric, are characterized by the equation
divg(Tg)2(f) = 0.
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As a second application of the general results just obtained, we shall
address the natural Lagrangian density LωM on J1(M×X4 TX4) given
by:

(5.17) L(j1
x(g,D)) =

1

2
‖dωD‖2

g(x) + L(
√
−‖ωD‖2

g)(x)

where (g,D) ∈ Γ(X4,M × X4TX4) is a representative of the point
j1
x(g,D) and ωD = iDg.
This is the so called non-linear vectorial Klein-Gordon Lagrangian

on a Lorentzian manifold (X4, g), whose field equations (as a free vari-

ational problem) are δgdωD − L′(ρ)
ρ
ωD = 0 as can be easily seen by the

local expression for the Lagrangian (5.17). Hence, taking into account
the constraint equation divg D = 0, we obtain:

(5.18) ÊTX4(g,D) = �gωD −
L′(ρ)
ρ

ωD

where �g is the Laplacian for the given metric g.
Analogously, making use of the local expression of the Lagrangian

(5.17) and deriving with respect to gij and gij
l , one obtains:

(5.19) (ÊM)2(g,D) = Lg−dωD ·dωD +S(�gωD⊗ωD)−L
′(ρ)

ρ
ωD⊗ωD

where S is the symmetrization operator and dωD · dωD denotes the
contraction of the first index of dωD with the contravariant index of
the (1, 1)-tensor defined by dωD and the metric.

Substituting (5.18) and (5.19) in (5.8) and (5.9), we obtain, respec-
tively:

(EM)2(g, f) =Lg − dωD · dωD + S(�gωD ⊗ ωD)−

−L
′(ρ)

ρ
ωD ⊗ ωD − (�gωD)(D)g − ρL′(ρ)g

f ∗EY (g, f) =iDd

(
�gωD −

L′(ρ)
ρ

ωD

)
In particular, the Eulerian expression of the second group of field

equations for these fluids are:

iDd�gωD − iDd

(
L′(ρ)
ρ

ωD

)
= 0

which, as can be seen, has as second term the Euler equation (5.12) for
the perfect fluids corresponding to the Lagrangian density L(ρ)ωM de-
fined by the second term of the Lagrangian (5.16) under consideration.
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Additionally, substituting in (5.14), we obtain the following expres-
sion for the Stress-Energy-Momentum tensor:

(Tg)2(f) =

[
1

2
‖dωD‖2

g − (�gωD)(D)

]
g + S(�gωD ⊗ ωD)− dωD · dωD

+

{
−L

′(ρ)

ρ
ωD ⊗ ωD + [L(ρ)− ρL′(ρ)] g

}
whose last term {. . .} coincides, as would be expected, with the Stress-
Energy-Momentum tensor (5.15) for the perfect fluids with Lagrangian
density L(ρ)ωM.

Apart from its possible practical interest, the present case is not
only geometrically very appealing, but also allows us to set the old
Klein-Gordon theory within the general framework of relativistic hy-
drodynamics. In particular, the continuity equation is no more than the
hydrodynamical translation of the well known Lorentz condition. On
the other hand, the solutions of the Klein-Gordon equations (δgωD = 0,

�gωD − L′(ρ)
ρ
ωD = 0) define a subclass of fluids with a Stress-Energy-

Momentum tensor that coincides with the one that would correspond to
the Klein-Gordon Lagrangian as a first order free variational problem.

6. Minimal gravitational interactions

Example 3 (General Relativity) can be generalized in an obvious way
to a Lagrangian density LMωM on Jk(M) where π : M→ X is a bun-
dle of non-singular metrics of a given signature on an oriented manifold
X and LM ∈ C∞(Jk(M)) an arbitrary function, invariant by the nat-
ural action of Diff(X). In particular, if we denote by Eins(LM) the
corresponding Euler-Lagrange operator, it will satisfy the generalized
Bianchi’s identity divg Eins(LM) = 0. Analogously, the Stress-Energy-
Momentum tensor of the natural variational problem LMωM on Jk(M)
coincides with Eins(LM).

Let LωM and LMωM be natural Lagrangian densities on the jet
bundles Jk(M×X Y ) and Jk(M), whose variational problems will be
called “source field” and “gravitational field” respectively.

Definition 6.1. A “minimal gravitational interaction” between the
source and gravitational fields is the natural variational problem on
Jk(M×X Y ) with Lagrangian density (L+ LM)ωM .

As is known, this definition constitutes the formalization of the clas-
sical Einstein trick, following which: “a field, invariant by the Poincaré
group, can be converted into another, invariant by the whole space-time
diffeomorphisms, in order to satisfy the General Relativity principle”.
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More precisely: given a variational problem on Jk(Y ) with Lagrangian
density Lgωg invariant by the subgroup G(g) ⊂ Diff(X) of the isome-
tries of g, we can obtain a Diff(X)-invariant variational problem taking
as Lagrangian density (L+LM)ωM on Jk(M×XY ), where (LωM)(g) =
Lgωg and LM ∈ C∞(Jk(M)) is a Diff(X)-invariant function. In Ein-
stein’s theory: k = 2, M = Lorentzian metrics bundle on X4 and
LM = R(g), the scalar curvature of g.

Definition 6.2. The Stress-Energy-Momentum tensor of the minimal
gravitational interaction (L+LM)ωM is the Stress-Energy-Momentum
tensor of the source field LωM.

Hence, Theorem 4.5 continues to give the explicit expression of this
tensor, which, bearing in mind that the Euler-Lagrange operator of the
Lagrangian density (L+ LM)ωM is:

E : (g, s) 7→ [(Eins(LM))(g) + EM(L)(g, s), (EY (L))g(s)]⊗ ωg

allows us to characterize the critical sections of the interaction as the
solutions of the system of equations:

(6.1) Eins(LM)(g) = (Tg)2(s), (EY (L))g(s) = 0

This is the last typical property of the Stress-Energy-Momentum
tensor we wish to remark, which, as can be seen, is almost a tautology
from the two previous definitions.

In the case of relativistic fluids (Example 4) we shall have:

(6.2) (Eins(LM))(g) = (Tg)2(f), (EY (L))g(f) = 0

where, as we have seen:

f ∗(EY (L))g(f) = iDd
(
ÊTX4(L)(g,D)

)
= divg(Tg)2(f)

Therefore, by the Bianchi’s identity divg Eins(LM) = 0, one has that
the first equation of the system (6.2) implies f ∗(EY (L))g(f) = 0 and
hence the second one, if f : X4 → M3 is a submersion. As is well
known, this is a classical property of relativistic fluids coupled with the
gravity, according to which: the Einstein equation for the gravitational
field implies the law of motion of the matter it is coupled with. Our
result then, showing the essentiallity of this fact, allows its immediate
generalization to all those minimal gravitational interactions for which
the second group of equations in (6.1) is equivalent to the vanishing of
the divergence of the Stress-Energy-Momentum tensor.
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order Calculus of Variations”, Geom. Meth. in Phys., D. Krupka ed. J. E.
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