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Publicaciones de la RSME, vol.3, pp. 53–64.

LAGRANGIAN REDUCTION

AND

CONSTRAINED VARIATIONAL CALCULUS
Preprint version

Publicaciones de la Real Sociedad Matemática Espa~nola, 3, 53--64
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Abstract

Some recent results on reduction problems of Euler-Poincaré type, min-
imal Lagrangian submanifolds and relativistic fluids in their variational
aspect [1, 2, 3, 4], have provided us with motivation for establishing a
theory of constrained variational problems on fibered manifolds, suit-
able for characterizing the “reduction” of a wide range of free variational
problems whose Lagrangian is “projectable” with respect to a jet fiber
bundle projection. In this conference we shall deal with this matter in
the case of first order constrained problems. After a brief description
of the point of view we propose for these problems, we characterize the
reduction problem, and finish with some examples which illustrate the
theory.
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2 Lagrangian Reduction and Constrained Variational Calculus

1 Constrained variational calculus

Our starting point will be a Lagrangian density Lη on the bundle j1π : J1Y →
X of the 1-jets of local sections of a fiber bundle π : Y → X over an n-
dimensional orientable manifold (L ∈ C∞(J1Y ) and η a volume element on
X); a submanifold S ⊆ J1Y such that (j1π)(S) = X (the constraint); and a
subalgebra AS of the Lie algebra X(Y ) of vector fields on Y , such that j1AS

is tangent to the submanifold S (the variation algebra).
On the subset of sections

ΓS(X, Y ) = {s ∈ Γ(X, Y ) / Im j1s ⊂ S}

one can define the functional and the differential of the functional in a section,
typical of the variational calculus, as follows:

L(s) =
∫

j1s
Lη , s ∈ ΓS(X, Y ) (1.1)

(δsL)(D) =
∫

j1s
Lj1DLη , s ∈ ΓS(X, Y ) , D ∈ AS (1.2)

from here the definition of a critical section can be given:

Definition 1. A section s ∈ ΓS(X, Y ) is critical when (δsL)(D) = 0 for each
vector field D ∈ AS whose support has a compact image on X

In particular, for free variational problems (those with S = J1Y , AS =
X(Y ) and ΓS(X, Y ) = Γ(X, Y )) one obtains the well known [6] first variation
formula:

(j1s)∗Lj1DLη = 〈Dv
s , E(s)〉η + d

(
ij1DΘ

)
, s ∈ Γ(X, Y ) , D ∈ X(Y ) (1.3)

where Dv
s ∈ Γ(X, s∗V (Y )) is the vertical component of the vector field D along

s, s ∈ Γ(X, Y ) 7→ E(s) ∈ Γ(X, s∗V (Y )∗) is the Euler-Lagrange operator and
Θ the Poincaré-Cartan form of the variational problem, and 〈 , 〉 is the natural
bilinear product.

The key point for these problems is that, for D running through X(Y ), Dv
s

runs through the whole set, Γ(X, s∗V (Y )), of π-vertical vector fields along s
(the space of “infinitesimal variations of s”), so that, integrating (1.3) over j1s
and taking the vector fields D ∈ X(Y ) whose supports have compact image
on X, one gets, due to the arbitariness of Dv

s , that a section s ∈ Γ(X, Y ) is
critical if and only if E(s) = 0 (Euler-Lagrange equations). Following (1.3)
one sees also that any subalgebra of X(Y ) whose vertical components along
each section s ∈ Γ(X, Y ) are the whole set of vertical vector fields along it,
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produces the same critical sections and the same Euler-Lagrange equations.
This is the case, e.g., of the subalgebras Xπ(Y ) and Xv(Y ) of π-proyectable
and π-vertical vector fields, correspondingly.

Going back to the general case, the problem we find now is that for D
running through the variation algebraAS ⊆ X(Y ), Dv

s runs through a subspace
ΓS(X, s∗V (Y )) ⊆ Γ(X, s∗V (Y )) (the “admissible infinitesimal variations of
s”), giving us no chance to apply the same argument as in the free case to
characterize the critical sections.

At this point, the fundamental condition we shall impose on our problem
is the following:

Parameterization condition:
There exists a vector bundle q : E → Y (parameter bundle), and for each sec-
tion s ∈ ΓS(X, Y ) a linear differential operator of order ≤ 1 (parameterization
operator), Ps : Γ(X, s∗E) → Γ(X, s∗V (Y )), whose image is the whole subspace
ΓS(X, s∗V (Y )) of the admissible infinitesimal variations of s.

Under this assumption the following holds:

Proposition 1 (Definition of the operator P+
s adjoint to Ps). The mapping

P+
s : Γ(X, s∗V (Y )∗) → Γ(X, (s∗E)∗) given by:

〈P+
s (v∗), e〉η = 〈v∗, Ps(e)〉η − d

[
iv∗(σPs(e))η

]
(1.4)

where σPs is the symbol of the operator Ps and where the bilinear products are
the obvious ones, is a linear differential operator with order ≤ 1 between the
fiber bundles (s∗V (Y ))∗ and (s∗E)∗.

In this conditions, if one takes s ∈ ΓS(X, Y ), D ∈ AS and, hence, Dv
s =

Ps(e) for some e ∈ Γ(X, s∗E) in formula (1.3), applying the previous result,
the new variation formula is obtained:

(j1s)∗Lj1DLη = 〈e, P+
s E(s)〉η + d

[
ij1DΘ + iE(σPs(e))η

]
(1.5)

which, integrating over j1s and taking vector fields D ∈ AS whose supports
have compact image on X, gives the linear functional on Γ(X, s∗E):

(δsL) (e) def= δsL (Ps(e)) =
∫

j1s
〈e, P+

s E(s)〉η (1.6)

therefore, taking into account that Av
S = {Ps(e) / e ∈ Γ(X, s∗E)}, the follow-

ing characterization of the critical sections is obtained:

Theorem 1. A section s ∈ Γ(X, Y ) is critical for the variational problem of
Lagrangian density Lη on J1(Y ), constraint manifold S ⊆ J1Y and algebra of
variation AS ⊆ X(Y ), if and only if:

Im j1s ⊂ S , P+
s E(s) = 0 (1.7)
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The first condition is the constraint, and the second one is a system of
partial differential equations (generally third order ones), constructed from
the Euler-Lagrange operator s 7→ E(s) of Lη as a free problem and from the
adjoint, P+

s , of the parameterization operator Ps.
In this framework, all the typical questions of the free variational problems

(infinitesimal symmetries and Noether theorems, second variation, Hamilto-
nian formalism, etc.) can be considered in a similar way.

In particular, Noether theory can be established as follows:

Definition 2. An infinitesimal symmetry is a vector field D of the algebra of
variation AS, such that Lj1DLη = 0.

Due to the first condition, for any section s ∈ ΓS(X, Y ), the vertical com-
ponent Dv

s of D with respect to s can be expressed as Dv
s = Ps(e) for some

e ∈ Γ(X, s∗E), hence, substituting the second condition (1.7) in the varia-
tion formula (1.5), the following generalization for these problems of Noether
theorem is obtained:

Theorem 2. If D is an infinitesimal symmetry of a constrained variational
problem and s is a critical section for it, then:

d
[
(j1s)∗ij1DΘ + iE(σPs(e))η

]
= 0 (1.8)

Following the same procedure for free problems, if DS is the R-Lie algebra
of infinitesimal symmetries of a constrained problem, a multimomentum map
can be defined for this problem

M : ΓS(X, Y ) → D∗
S ⊗ Λn−1T ∗(X)

by the formula:

[M(s)](D) = (j1s)∗ij1DΘ + iE(σPs(e))η , s ∈ ΓS(X, Y ) , D ∈ DS (1.9)

In particular, for natural constrained variational problems there exists a notion
of Stress-energy-momentum tensor, which can be constructed following the
same steps [3] as for free problems.

Remark:
For the free case, the parameter bundle q : E → Y is the vertical bundle

V (Y ) of Y , and for each section s ∈ Γ(X, Y ) the parameterization operator
Ps is the identity, hence, as now σPs = 0 and P+

s = identity, the previous
formulae become, as one would expect, the usual ones for free problems.
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2 Lagrangian reduction

Let us consider the following diagram:

J2(Y )
Φ1

$$HH
HH

HH
HH

H

��
J1(Y )

Φ

$$IIIIIIIIII

��

J1(Y )

��
Y

π
��

Y

π
yyttttttttttt

X s=Φ◦j1s

GG

s

CC
j1s

::

(2.1)

where Φ is a surjective bundle morphism over X and Φ1 is its first order
extension, i.e.:

Φ1(j2
xs) = j1

x(Φ ◦ j1s) , s ∈ Γ(X, Y ) (2.2)

If Lη is a Lagrangian density on J1(Y ), let us consider the second order
free variational problem given by the Lagrangian density Φ∗

1(Lη) on J2(Y ),
whose algebra of variation will be chosen to be a Lie subalgebra A ⊆ X(Y )
of the free variational problem type (i.e., for each section s ∈ Γ(X, Y ), Av

s =
Γ(X, s∗V (Y )) ), and further, let j1A be Φ-projectable. In these conditions,
assuming S = Φ1(J2(Y )) ⊆ J1(Y ) is a submanifold, the Φ-projection AS =
Φ(j1A) ⊆ X(Y ) automatically fulfills the condition of being j1AS tangent to
the submanifold S. One then obtains a constrained variational problem with
Lagrangian density Lη on J1(Y ), constraint submanifold S = Φ1(J2Y ) and
variation algebra AS = Φ(j1A).

In these conditions, the Lagrangian reduction problem could be stated
as follows: in what sense is the free variational problem on J2(Y ) with La-
grangian density Φ∗(Lη) “reducible” to the constrained variational problem
on J1(Y ) with Lagrangian density Lη, constraint submanifold S = Φ1(J2Y )
and variation algebra AS = Φ(j1A)?

By construction, for any section s ∈ Γ(X, Y ) and vector field D ∈ A:

(j2s)∗Lj2D(Φ∗
1(Lη)) = (j1s)∗Lj1DLη (2.3)

where s = Φ ◦ j1s ∈ ΓS(X, Y ) and D = Φ(j1D) ∈ AS .
From which follows:

Theorem 3 (reduction and reconstruction). If a section s ∈ Γ(X, Y ) is crit-
ical with respect to the free variational problem, then the projected section
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s = Φ ◦ j1s ∈ ΓS(X, Y ) is critical with respect to the constrained variational
problem. Conversely, if s ∈ Γ(X, Y ) is in the image of Φ (i.e., s = Φ ◦ j1s for
some s ∈ Γ(X, Y )) and is critical with respect to the constrained variational
problem, then any s ∈ Γ(X, Y ) such that s = Φ◦j1s is also critical with respect
to the free variational problem.

One can briefly express this result saying that both variational problems,
the free and constrained ones, are Φ-related. Under this point of view, the
general program for the Lagrangian reduction should include among its main
subjects the study of the possible Φ-relation of the typical concepts and con-
structions of the variational calculus (field equations, Noether Theory, Hamil-
tonian structure, second variation, etc.). Special geometrical and physical
interest should be expected in the study of the possible Φ-relation of the cor-
responding Stress-energy-momentum tensors.

Remark:
If Lη is a Lagrangian density on Y , then Φ∗

1(Lη) = Φ∗(Lη) is defined on
J1(Y ), giving rise, thus, to a reduction problem of a first order free variational
problem to a zero-order constrained one with the same constraint submanifold
and same variation algebra as for the general case.

3 Examples

Among the four examples we shall deal with, the first three ones correspond
to the particular case of the previous observation, and the fourth one to the
general case.

3.1 Electromagnetism

Diagram (2.1) is for this case the following:

J2(T ∗(X4))
d1

''PPPPPPPPPPPP

��
J1(T ∗(X4))

d

''PPPPPPPPPPPP

��

J1Λ2T ∗(X4)

��
T ∗(X4)

π

��

Λ2T ∗(X4)
π

vvnnnnnnnnnnnnn

X4
F=dA

@@

A

DD
j1A

;;

(3.1)

where the morphism d is given by the exterior derivative through the formula
d(j1

xA) = (dA)x, and so: d1(j2
xA) = j1

x(dA).
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Hence, the constraint is, in this case, the submanifold:

S = d1(J2T ∗(X4)) = {j1
xF / (dF )x = 0} ⊂ J1Λ2T ∗(X4) (3.2)

Taking as variation algebra for the free problem the subalgebra A =
Λ1X4 ⊕ X̃(X4) ⊂ X(T ∗(X4)), where Λ1X4 is identified in the standard way
with a subalgebra of the vertical vector fields on T ∗(X4), and ˜ is the
natural lifting to T ∗(X4) of the vector fields of X4, then the variation algebra
of the constrained problem, with analogous identification and notations, is the
subalgebra:

AS = d(j1A) = dΛ1X4 ⊕ X̃(X4) ⊂ X(Λ2T ∗(X4)) (3.3)

Let g = 〈 , 〉g be a Lorentz metric on X4 and ηg its volume element. The
electromagnetic field Lagrangian in vacuum is Lηg where L ∈ C∞(Λ2T ∗(X4))
is given by L(Fx) = 1

4〈Fx, Fx〉gx . We have, then, a reduction problem for the
first order free variational problem, with Lagrangian density d∗(Lηg) (electro-
magnetism expressed in terms of potentials “A”), to the zero-order constrained
variational problem of Lagrangian density Lηg, constraint submanifold S and
variation algebra AS (electromagnetism expressed in terms of field intensity
“F”).

This constrained problem’s parameterization condition is fulfilled taking
as parameter bundle E = π∗T ∗(X4) over Λ2T ∗(X4). If F ∈ ΓS(X4,Λ2T ∗(X4))
(that is, dF = 0), using the identifications: F ∗π∗T ∗(X4) = T ∗(X4) and
F ∗V (Λ2T ∗(X4)) = Λ2T ∗(X4), we shall choose as parameterization operator
PF the exterior derivative d : Λ1X4 → Λ2X4. In these conditions, adjunction
formula (1.4) can be expressed as:

〈δF, A〉gηg = 〈F, dA〉gηg − d [(∗F ) ∧A] , A ∈ Λ1X4 , F ∈ Λ2X4 (3.4)

where ∗ is the Hodge operator with respect to the volume ηg and δ = ∗d∗ is
the codifferential of differential forms.

If F ∈ ΓS(X4,Λ2T ∗(X4)) and D = (dA′, D̃′) ∈ AS (where A′=1-form and
D′=vector field on X4), then the first variation formula can be expressed as:

F ∗(LDLηg) = 〈A′, δF 〉g + d
[
〈F, F 〉giD′ηg + (∗F ) ∧A′] (3.5)

Hence, a 2-form is critical with respect to this constrained problem if and
only if

dF = 0 , δF = 0 (3.6)

These are the well known Maxwell equations for vacuum, in terms of field
intensities, being the first one nothing more than the constraint condition.
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3.2 Reduction in principal bundles: Euler-Poincaré equations

Let p : P → X be a principal bundle with structural group G. As is well known
[5, 6], the quotient J1(P )/G of J1(P ) with respect to the 1-jet extension of
the action of G over P is identified with the affine bundle π : C(P ) → X of
connections on P . If Φ is the projection onto the quotient, we get the following
diagram:

J2P
Φ1

''OOOOOOOOOOOO

��
J1P

Φ

''NNNNNNNNNNNN

��

J1C(P )

��
P

p

��

J1(P )/G = C(P )
π

wwooooooooooooo

X σ=Φ◦j1s

AA
s

BBj1s

::

(3.7)

From here, one can define a constrained variational problem, taking as
constraint the submanifold:

S = Φ1(J2P ) = {j1
xσ / (Curv σ)x = 0} ⊂ J1C(P ) (3.8)

and as variation algebra, AS , the natural representation over the connections
of the Lie algebra, aut P , of infinitesimal automorphisms of the bundle P. [8].

As is known, the gauge algebra gauP , of the bundle P , is the subalgebra
of aut P given by the infinitesimal p-vertical automorphisms, it becomes also
clear that both aut P and gauP can be chosen to be the variation algebra for
a free variational problem on P .

In this framework, certain recently studied [4] reduction problems in prin-
cipal bundles that produce Euler-Poincaré type equations, consist essentially
of the reduction following our formalism of a free variational problem de-
fined on J1P by a Lagrangian density Lη of the form Φ∗(lη) (l ∈ C∞(C(P )),
η=volume element on X) to the constrained variational problem on C(P )
with Lagrangian density lη and constraint submanifold and variation algebra
as considered previously.

The parameterization condition for this constrained problem holds tak-
ing as parameter bundle E = π∗ AdP (AdP=adjoint bundle of P ) over
C(P ). If σ ∈ ΓS(X, C(P )) (i.e., Curv σ = 0), taking into account the iden-
tifications: σ∗π∗ AdP = AdP and σ∗V (C(P )) = T ∗(X) ⊗ AdP , the cho-
sen parameterization operator Pσ will be the exterior derivative with respect
to the connection σ, dσ : Γ(X, AdP ) → Γ(X, T ∗(X) ⊗ AdP ). The operator
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d+
σ : Γ(X, T (X)⊗ (AdP )∗) → Γ(X, (AdP )∗), adjoint to dσ, is in this case the

divergence operator, divσ, with respect to the connection σ and the volume
element η, of vector fields on X with values in (AdP )∗.

The general theory can be applied in this case without problems. The
critical sections of the constrained problem are then characterized by:

Curv σ = 0 , divσ
δl

δσ
= 0 (3.9)

where the Euler-Lagrange operator as free variational problem of the La-
grangian density lη is denoted now by δl

δσ , as can be found in the literature.

3.3 Relativistic fluids

In its simplest version (perfect fluids), a relativistic fluid on a Lorentz man-
ifold (X4, g) is given by a zero-order constrained variational problem on the
tangent bundle T (X4) with Lagrangian density Lηg, where L ∈ C∞(T (X4)) is
given by L(Dx) = F (ρ) (F ∈ C∞(R), ρ =

√
−g(Dx, Dx)), where the sections

D ∈ Γ(X, T (X4)) must fulfill the constraint condition divg D = 0, and where
the constraint algebra will be specified later. Actually, the bundle under con-
sideration is the open subset Y = {Dx ∈ Tx(X4) / g(Dx, Dx) < 0} ⊂ T (X4),
which will also be denoted by T (X4), for simplicity. The scalar ρ and the
vector field U = D/ρ are the “mass density” and “velocity field” of the fluid,
while divg D = 0 is the continuity equation.

Identifying T (X4) with Λ3T ∗(X4) by means of the isomorphism: D 7→
ω3 = iDηg, fluids become 3-forms, and the continuity equation translates to
the condition that the corresponding 3-forms are closed.

Under this second version, the problem under consideration corresponds
to the reduction diagram:

J2(X4 × R3)
Φ1

))RRRRRRRRRRRRRR

��
J1(X4 × R3)

Φ

))RRRRRRRRRRRRRR

��

J1(Λ3T ∗(X4))

��
X4 × R3

π

��

Λ3T ∗(X4) ' T (X4)
π

uukkkkkkkkkkkkkkkk

X4 ω3=Φ◦j1f

<<
f

DD
j1f

;;

(3.10)

where Φ is the surjective bundle morphism over X4 [9]:

Φ
(
j1
x(f : X4 → R3)

)
= f∗x(dz1 ∧ dz2 ∧ dz3) (3.11)
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dz1 ∧ dz2 ∧ dz3 being the standard volume element on R3.
The constraint submanifold can now be characterized as:

S = Φ1(J2(X4 × R3)) = {j1
xω3 / (dω3)x = 0} ⊂ J1(Λ3T ∗(X4)) (3.12)

Taking the subalgebra A = X̃(X4) ⊂ X(X4 × R3) as variation algebra
for the free problem, the variation algebra for the constrained problem is
As = X̃(X4) ⊂ X(Λ3T ∗(X4)), where ˜ now consists of the natural liftings
of vector fields on X4 to Λ3T ∗(X4).

The paramaterization condition for the constrained problem holds tak-
ing as parameter bundle E = π∗T (X4) over Λ3T ∗(X4) and, for each ω3 ∈
ΓS(X, Λ3T ∗(X4)) (that is, dω3 = 0), using the identifications ω∗3π

∗T (X4) =
T (X4) and ω∗V (Λ3T ∗(X4)) = Λ3T ∗(X4), taking as parameterization operator
Pω3 :

Pω3 : K ∈ X(X4) 7→ diKω3 ∈ Λ3(X4) (3.13)

If we apply our general theory in this case, changing again 3-forms back
to vector fields, one gets as Euler-Lagrange equations:

divg D = 0 , iDd

(
F ′(ρ)

ρ
iDg

)
= 0 (3.14)

where the first one is the continuity equation and the second one is the Euler
equation for perfect fluids.

3.4 H-Minimal Lagrangian submanifolds

Given a differentiable manifold, M2n, endowed with a symplectic metric, Ω,
and a Riemannian metric, g, this theory deals, as is well known, with the
study of the submanifolds M ′

n ⊂ M which are Lagrangian (i.e., Ω|M ′
n

= 0) and
minimize the functional M ′

n 7→ g-area of M ′
n with respect to certain variations

(known as “Hamiltonian” ones), that conserve the “Lagrangianity”. Given one

of these submanifolds X
� � M ′

n // M2n , according to Darboux-Weinstein Theo-
rem [10], there exists a symplectic diffeomerphism between a tubular neigh-
bourhood of M ′ and the cotangent bundle T ∗(X) endowed with its standard
symplectic structure, that maps the submanifold M ′

n onto the zero section
of T ∗(X). Pushing the Riemannian metric g forward to T ∗(X) by means of
this diffeomorphism, the problem transforms (in the neighbourhood of M ′

n)
into the study of Lagrangian and g-area minimizing sections (with respect to
Hamiltonian variations) of T ∗(X).

Under this new point of view, taking into account that a section ω : X →
T ∗(X) is Lagrangian if and only if dω = 0, the situation we have corresponds
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to the following diagram:

J2(X × R)
d1

''OOOOOOOOOOO

��
J1(X × R)

d

''OOOOOOOOOOO

��

J1(T ∗(X))

��
X × R

π

��

T ∗(X)
π

wwnnnnnnnnnnnnn

X ω=df

AA
f

CC
j1f

;;

(3.15)

We have, also, the same situation as in the first example (electromag-
netism), changing “1-forms” with “functions” and “2-forms” with “1-forms”.

Keeping (with the mentioned changes) the same constraint manifold, the
variation algebra and the parameterization of the problem, we have:

S = d1(J2(X × R)) = {j1
xω / (dω)x = 0} ⊂ J1(T ∗(X)) (3.16)

A = C∞(X)⊕ X̃(X) , AS = dC∞(X)⊕ X̃(X) (3.17)

Pω = d : C∞(X) → Λ1X (3.18)

In particular, “Hamiltonian variations” correspond with the subalgebra
dC∞(X) of the variation algebra AS .

The novelty in this example with respect to the previous ones is that
the Lagrangian density corresponding to the functional L : ω 7→ g-area of ω
is defined on J1T ∗(X), and, therefore, d∗1L will be on J2(X × R). We have,
thus, a reduction problem of a second order free variational problem to a first
order constrained variational problem. In particular, critical sections of the
constrained problem are characterized by the equations:

dω = 0 , δHω = 0 (3.19)

where Hω is the polar 1-form with respect to the symplectic metric Ω of the
mean curvature vector along the submanifold ω with respect to the Rieman-
nian metric g, and δ = ∗d∗, where ∗ is the Hodge operator of the submanifold
ω with respect to its Riemannian area element.
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