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Abstract

Under certain parametrization conditions for the “infinitesimal admissible varia-
tions”, we propose a theory for constrained variational problems on arbitrary bun-
dles, which allows us to introduce in a very general way the concept of multi-
momentum map associated to the infinitesimal symmetries of the problem. For
natural problems with natural parametrization, a stress-energy-momentum tensor
is constructed for each “admissible section” from the multi-momentum map associ-
ated to the natural lifting of vector fields on the base manifold. This tensor satis-
fies the typical properties of a stress-energy-momentum tensor (Diff(X)-covariance,
Belinfante-Rosenfeld type formulas, etc.), and also satisfies corresponding conser-
vation and Hilbert type formulas for natural problems depending on a metric. The
theory is illustrated with several examples of geometrical and physical interest.
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1 Introduction

In [6] A.Fernandez, P.L.Garcia and C.Rodrigo generalized to higher order the
method introduced by M.Gotay and J.E.Marsden [11] to construct stress-
energy-momentum tensors for first order variational problems from the multi-
momentum map associated to the natural lifting of vector fields of the base
manifold by infinitesimal symmetries of the problem. More precisely, the main
result in [6] is the following:
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Given a Lagrangian density Lω on the bundle JkY of k-jets of sections of a
natural bundle p : Y → X with differential index 1 (L ∈ C∞(JkY ), ω=volume
element on X), for each section s ∈ Γ(X, Y ) there exists a unique tensor
T (s) ∈ Γ(X, T ∗X ⊗ Λn−1T ∗X) such that:

iDT (s) = µΘ(s)(D) + dα , D ∈ X(X)

where µΘ : Γ(X, Y ) → X(X)∗ ⊗ Γ(X, Λn−1T ∗X) is the multi-momentum map
associated to the infinitesimal symmetries X(X) and to any Poincaré-Cartan
form, Θ, of the variational problem (α=(n− 2)-form on X depending on Θ,s
and D).

The tensor so constructed satisfies the typical properties of a stress-energy-
momentum tensor (Diff(X)-covariance, Belinfante-Rosenfeld type formulas,
etc.), and admits also a Hilbert type explicit expression as well as the corre-
sponding conservation law for those problems depending on a metric.

In the spirit of the program of Lagrangian reduction in its most recent formu-
lations (Marsden and Ratiu [12], Cendra, Marsden and Ratiu [4], Fernandez,
Garcia and Rodrigo [7], Castrillon, Garcia and Ratiu [3], Castrillon and Mars-
den [2], etc.), according to which a certain kind of variational problems, called
“reducible” ones, can be “reduced” to lower order constrained variational prob-
lems, it seems appropriate to study the concept of stress-energy-momentum
tensor with regard to such a reduction procedure. Electromagnetic field the-
ory (“field intensities” versus “potentials”) and relativistic fluids (Eulerian
and Lagrangian pictures) are two typical examples of this situation. The sub-
ject is still more relevant, taking into account the lack at the present time
of a reasonable definition of Poincaré-Cartan form for constrained problems,
a concept which, as we have seen, represents the foundation of the notion of
stress-energy-momentum tensor in the ordinary case.

Motivated by this question, in the present work we tackle the study of the
concept of stress-energy-momentum tensor for natural constrained variational
problems as a first stage in the program of reduction we have mentioned.

The outline of the paper is as follows: in Section 2 we propose a formulation
for the Constrained Variational Calculus where the “admissible infinitesimal
variations” AS of the problem are considered as one more datum, on equal
footing with the Lagrangian density Lω and the constraint S. If we now impose
the existence of a vector bundle q : E → Y (bundle of parameters) such that
for each admissible section s ∈ ΓS(X, Y ), the vertical components along s of
AS are the image of sections of s∗E by a certain first order differential operator
Ps from that bundle to the bundle s∗V Y (parametrization condition 2.2), it
is now possible to obtain a first variation formula for constrained problems
(Theorem 2.4), from which we have the way clear to develop in this new
situation the variational theory. In particular, taking into consideration the
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“boundary term” of this formula, it is possible to state a Noether Theory for
infinitesimal symmetries of constrained problems and to give a definition of
the corresponding multi-momentum map.

Section 3 is dedicated to natural problems. With an obvious definition of
this concept in the constrained case (Definition 3.1), if we admit that the
parametrization of the problem is also natural (condition 3.2), it is then pos-
sible to introduce the concept of multi-momentum map associated to the in-
finitesimal symmetries defined by the vector fields of the base manifold (Def-
inition 3.5). In these conditions the main result of this section is Theorem
3.6, which introduces the concept of stress-energy-momentum tensor for con-
strained problems. In section 4, natural problems depending on a metric are
considered, obtaining an interesting generalization of the typical Hilbert for-
mula and conservation law for this kind of tensor (Theorem 4.2 and Corollaries
4.3 and 4.4).

The theory we present is illustrated with four examples of geometrical and
physical interest: Euler-Poincaré equations of principal connections (Example
1), and H-minimal Lagrangian submanifolds (Example 2), considered at the
end of section 2, and electromagnetism (Example 3) and relativistic fluids
(Example 4), treated in section 5.

Regarding the notations and other preliminary aspects, these are the same as
in [6], of which this paper can be considered as a natural continuation.

2 Calculus of Variations with Constraints

Our starting point will be a Lagrangian density Lω on the bundle jkp : JkY →
X of the k-jets of local sections of a fiber bundle p : Y → X on an n-
dimensional oriented manifold (L ∈ C∞(JkY ) and ω a volume element on
X), a submanifold S ⊆ JkY such that (jkp)(S) = X (the constraint), and
a subalgebra AS of the Lie algebra X(k)(Y ) of infinitesimal contact transfor-
mations of order k, tangential to the submanifold S (the variation algebra).

On the subset ΓS(X,Y ) =
{
s ∈ Γ(X, Y ) / Im jks ⊆ S

}
of sections that satisfy

the constraint one has the functional

L(s) =
∫

X
(jks)∗Lω

defined for sections s ∈ ΓS(X, Y ) for which the previous integral exists.

If Ac
S is the subalgebra of those elements in the variation algebra AS whose

support projects onto a compact subset of X, we may define the differential
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of the functional L at any section s ∈ ΓS(X, Y ) by the rule:

(δsL)(D) =
∫

X
(jks)∗LD(Lω) ∈ R , D ∈ Ac

S (2.1)

From here the definition of a critical section can be given as follows:

Definition 2.1 A section s ∈ Γ(X, Y ) is critical for the constrained varia-
tional problem of Lagrangian density Lω, constraint submanifold S ⊆ JkY
and variation algebra AS ⊆ X(k)(Y ) if s satisfies the constraint, that is,
s ∈ ΓS(X, Y ), and the differential δsL : Ac

S → R at the section s vanishes.

From now on, we shall assume the variation algebraAS to satisfy the following:

Condition 2.2 (Parametrization condition) There exists a vector bundle
q : E → Y (bundle of parameters) and a vector bundle morphism P : J1(E/X)J1Y →
(V Y )J1Y (where J1(E/X)J1Y is the vector bundle j1q : J1(E/X) → J1Y and
where V YJ1Y is the pull-back of V Y to J1Y ) such that for each admissible
section s ∈ ΓS(X, Y ) the first order differential operator Ps : Γ(X, s∗E) →
Γ(X, s∗V Y ) defined by Ps(es) = P (j1es) (parametrization operator) satisfies:

Ps(Γ(X, s∗E)) = Av
s = {Dv

s /D ∈ AS}

Ps(Γ
c(X, s∗E)) = Ac

s = {Dv
s /D ∈ Ac

S}
where Dv

s = θ1(D)jks denotes the vertical component along s of the vector field
D.

Given a local fibred coordinate system (xν , yj, qi) for q : E → Y (where
(xν , yj) is a local fibred coordinate system for p : Y → X and the func-
tions qi are linear on the fibers of q : E → Y ), the vector bundle morphism
P : J1(E/X) → V YJ1Y can be expressed, with respect to local coordinates
(xν , yj

β) and (xν , yj
β, qi

α) 0 ≤ |α|, |β| ≤ 1 induced on the respective 1-jet bun-
dles, as:

P (xν , yj
β, qi

α) =
(
P jα

i (xν , yj
β)qi

α

)( ∂

∂yj

)
Thus, if a section s is defined by yj = yj(x), the corresponding differential
operator Ps can be expressed as:

Ps

(
qi(x)

)
=

(
P j

i

(
xν ,

∂yj(x)

∂xβ

)
qi(x) + P jµ

i

(
xν ,

∂yj(x)

∂xβ

)
∂qi(x)

∂xµ

)
∂

∂yj
(2.2)

Proposition 2.3 (Definition of the operator P+
s adjoint to Ps)

There exists a unique first order differential operator P+
s : Γ(X, s∗V Y ∗⊗ΛnT ∗X) →

Γ(X, s∗E∗ ⊗ ΛnT ∗X) such that:

〈Ps(e), E〉 = 〈e, P+
s (E)〉+ d(〈σPs(e), E〉) (2.3)
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e ∈ Γ(X, s∗E), E ∈ Γ(X, s∗V ∗Y ⊗ ΛnT ∗X), where σPs is the symbol of the
operator Ps and where the bilinear products are the obvious ones.

PROOF. Let {e1, . . . em′} be a local basis of E associated to the local fibred
coordinate system (xν , yj, qi) chosen for E. Let {ω1, . . . , ωm′} denote its dual
basis. Following (2.2), for any sections e = qi(x)ei ∈ Γ(X, s∗E) and E =
gj(x)dyj ⊗ ω ∈ Γ(X, s∗V Y ∗ ⊗ ΛnT ∗X), we have:

〈Ps(q
iei),gjdyj ⊗ ω〉 =

(
[Ps]

j
iq

igj + [Ps]
jµ
i

∂qi

∂xµ
gj

)
ω =

=

(
[Ps]

j
iq

igj +
∂

∂xµ

(
[Ps]

jµ
i qigj

)
− qi ∂

∂xµ

(
[Ps]

jµ
i gj

))
ω =

= qi

(
[Ps]

j
igj −

∂

∂xµ

(
[Ps]

jµ
i gj

))
ω + d

(
[Ps]

jµ
i qigjωµ

)
=

= 〈qiei, P
+
s (gjdyj ⊗ ω)〉+ d(〈σPs(q

iei), gjdyj ⊗ ω〉)

(2.4)

where we denote ω = dx1∧. . .∧dxn, ωµ = i ∂
∂xµ

ω, and [Ps]
j
i (x) = P j

i

(
xν , ∂yj(x)

∂xβ

)
,

[Ps]
jµ
i (x) = P jµ

i

(
xν , ∂yj(x)

∂xβ

)
for any section s ∈ ΓS(X, Y ) with equations yj =

yj(x).

As can be seen, the term [Ps]
jµ
i qigjωµ is obtained by contraction of E with

σPs(q
iei) ∈ Γ(X, T ∗X⊗ s∗V Y ), σPs being the symbol of the differential oper-

ator Ps. The decomposition given is therefore global and independent of the
chosen coordinate system, and the (globally well-defined) difference between
〈Ps(e), E〉 and d (〈σPs(e), E〉) is a tensor on the component e ∈ Γ(X, s∗E).

To prove uniqueness, let us suppose that there are two such decompositions:
〈Ps(e), E〉 = 〈e, P+

s (E)〉 + d〈σPs(e), E〉 = 〈e, P ?
s (E)〉 + d〈σPs(e), E〉. We would

have: ((P+
s −P ?

s )(E))(e) = d◦(〈σPs−σPs, E〉)(e), a decomposition of the form
T (e) = d ◦H(e), for a morphism of vector bundles T .

We shall then prove that there is no morphism T of a vector bundle s∗E
to the bundle of n-forms that factors through the exterior derivative d and
a differential operator H (apart from T = 0). Indeed, if T (e) = d(H(e)) ∈
Γ(X, ΛnT ∗X) is not 0 at some point p ∈ X, there would exist a function f ∈
C∞(X) with compact support in a neighborhood of p such that

∫
X f ·T (e) 6= 0,

but then:

0 6=
∫

X
f · T (e) =

∫
X

T (f · e) =
∫

Supp(f)
d(H(f · e)) =

∫
∂Supp(f)

H(f · e) = 0

where the last equality holds because Supp(H(f · e)) ⊆ Supp(f) for any dif-
ferential operator H. The only possibility is, then, T = 0.
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Moreover, in this case H(e) is a closed (n − 1)-form for each e ∈ Γ(X, s∗E),
hence if H is C∞(X)-linear, d(H(f · e)) = d(f ·H(e)) = df ∧H(e) = 0, ∀f ∈
C∞(X) and therefore H(e) ∈ Γ(X, Λn−1T ∗X) vanishes for any e ∈ Γ(X, s∗E).
Both components of our decomposition (2.3) are unique. 2

Formula (2.3) provides a commutation rule which, when applied to the first
variation formula of the Calculus of Variations without constraints [6, see
Theorem 2.5], leads to the following fundamental result:

Theorem 2.4 (Constrained first variation formula) For any admissible
section s ∈ ΓS(X, Y ) and any admissible infinitesimal variation D ∈ AS of
a constrained variational problem with Lagrangian density Lω on JkY , con-
straint submanifold S ⊆ JkY and variation algebra AS ⊆ X(k)(Y ), satisfying
the parametrization condition 2.2, one has:

(jks)∗LD(Lω) = 〈eDv
s
, P+

s E(s)〉+ d
[
(j2k−1s)∗iD(2k−1)

Θ + 〈σPs(eDv
s
), E(s)〉

]
(2.5)

where E(s) and Θ are respectively the Euler-Lagrange operator and any Poinca-
ré-Cartan form for the Lagrangian density Lω as a problem without constraints
and where eDv

s
∈ Γ(X, s∗E) is any section such that Ps(eDv

s
) = Dv

s .

The linear functional δsL defined by (2.1) will be given by the formula:

(δsL) (D) =
∫

X
〈eDv

s
, P+

s E(s)〉 , D ∈ Ac
S (2.6)

where eDv
s
∈ Γc(X, s∗E) is any section such that Ps(eDv

s
) = Dv

s .

PROOF. Parametrization condition 2.2 of the variation algebra AS allows
the substitution of θ1(D)jks in the first variation formula (2.3) of [6] by Ps(eDv

s
)

for some section eDv
s
∈ Γ(X, s∗E). Formula (2.5) is now obtained by applying

Proposition 2.3.

Formula (2.6) can now be obtained in a direct way taking D ∈ Ac
S. 2

From formula (2.6), taking into account the arbitrariness of the section eDv
s
∈

Γc(X, s∗E), it follows that:

Corollary 2.5 A section s ∈ Γ(X, Y ) is critical for the constrained varia-
tional problem if and only if:

Im jks ⊆ S , P+
s E(s) = 0 (2.7)

6



The first group of equations Im jks ⊆ S are the constraints, k-order differen-
tial equations on the components of s, while the second group, following the
explicit expressions in (2.4), is given by:

0 = P+
s E(s) =

{
P j

i

(
xν ,

∂yj(x)

∂xβ

)
· Ej

(
xν ,

∂|σ|yj(x)

∂xσ

)
−

− ∂

∂xµ

(
P jµ

i

(
xν ,

∂yj(x)

∂xβ

)
· Ej

(
xν ,

∂|σ|yj(x)

∂xσ

))}
ωi ⊗ ω

(2.8)

The mapping P+E : s ∈ ΓS(X, Y ) 7→ P+
s E(s) ∈ Γ(X, E ⊗ ΛnT ∗X) is deter-

mined when we fix the vector bundle of parameters E and morphism P of
parametrization for AS. We shall call it the Euler-Lagrange operator of the
constrained variational problem parametrized by P .

In this framework, all the typical questions of the calculus of variations without
constraints (infinitesimal symmetries and Noether theorems, second variation,
Hamiltonian formalism etc.) can be developed in a similar way. In particular,
Noether Theory can be established as follows:

Definition 2.6 An infinitesimal symmetry of a constrained variational prob-
lem with Lagrangian density Lω on JkY , constraint submanifold S ⊆ JkY
and variation algebra AS ⊆ X(k)(Y ), is a vector field D ∈ AS such that
LD(Lω) = 0.

Theorem 2.7 (Noether) Given a constrained variational problem verifying
parametrization condition 2.2, if D ∈ AS is an infinitesimal symmetry and s
is a critical section of the problem, then:

d
[
(j2k−1s)∗iD(2k−1)

Θ + 〈σPs(eDv
s
), E(s)〉

]
= 0 (2.9)

where Θ is any Poincaré-Cartan form of the Lagrangian density Lω as a
problem without constraints and eDv

s
∈ Γ(X, s∗E) is any section such that

Ps(eDv
s
) = Dv

s .

PROOF. It suffices to apply the formula of variation (2.5), taking into ac-
count that, since D ∈ AS is an infinitesimal symmetry of the problem, LDLω =
0, and since s ∈ ΓS(X, Y ) is critical, P+

s E(s) = 0. 2

Following the same route as in the calculus of variations without constraints,
this framework allows us to define for any subalgebra DS of the Lie alge-
bra of infinitesimal symmetries of a constrained variational problem, a multi-
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momentum map µ : ΓS(X, Y ) → D∗
S ⊗ Λn−1T ∗X by the rule:

[µ(s)] (D) =
[
(j2k−1s)∗iD(2k−1)

Θ + 〈σPs(eDv
s
), E(s)〉

]
, s ∈ ΓS(X, Y ), D ∈ DS

(2.10)

Remark 2.8 Variational problems without constraints correspond to the case
S = JkY , AS = X(k)(Y ), E = V Y and P = Id, so that for any section
s ∈ Γ(X, Y ) there holds Ps = Id, P+

s = Id and σPs = 0, so formulas (2.5)
(2.6) (2.7) (2.8) (2.9) transform into the corresponding ones for problems
without constraints.

Remark 2.9 The opposite case in complexity arises when the parametriza-
tion of the problem is given by differential operators Ps of arbitrary order a
which depend on the section s up to a certain order b, that is: the bundle of
parameters is a vector bundle q : E → J bY , the morphism P is a vector bundle
morphism P : Ja(E/X)Ja+bY → (V Y )Ja+bY and the parametrization operators
Ps : Γ(X, (jbs)∗E) → Γ(X, s∗V Y ), s ∈ ΓS(X, Y ) are given by the formula
Ps(ejbs) = P (jae). In this case, an analogue to Proposition 2.3 can be given,
the adjoint of the operators Ps exist and are univocally defined, the term σPs

is replaced by a certain (a − 1)-order differential operator, and from here all
the results above can be recovered in the same way as has been explained. For
more details on this generalization, the reader is referred to [1,16].

We will finish this section with two examples that illustrate this approach in
a very clear way.

Example 1 Euler-Poincaré equations for principal connections

Let p : P → X be a principal bundle with structural group G and Ad P
the corresponding adjoint bundle. Let C(P ) = J1P/G be the affine bundle of
connections on P [8–10], modelled over the vector bundle T ∗X⊗Ad P . On this
bundle we shall consider the constrained variational problem with Lagrangian
density Lω (L ∈ C∞(C(P ))), constraint submanifold S = {j1

xγ / (Curv γ)x =
0} and variation algebra, AS, the natural representation over the bundle of
connections of the Lie algebra aut P of infinitesimal automorphisms of the
principal bundle P .

The parametrization condition 2.2 for this constrained problem holds taking
as bundle of parameters E = (Ad P )C(P ), the pull-back to C(P ) of the adjoint
bundle of P , and the vector bundle morphism P : (j1

xB, j1
xγ) ∈ J1(E/X) 7→

((dγB)x, j
1
xγ) ∈ V (C(P ))J1C(P ), where the differential (dγB)x ∈ T ∗

xX ⊗ Adx P
can be seen as an element of V (C(P )) via the natural identification of this
bundle with (T ∗X ⊗ Ad P )C(P ).

The parametrization operator Pγ : Γ(X, Ad P ) → Γ(X, T ∗X ⊗ Ad P ) is the
differential dγ with respect to the connection γ and its adjoint is the corre-
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sponding divergence operator divγ. The characterization of critical sections of
this problem by corollary 2.5 is then given by Euler-Poincaré equations [7]

Curv γ = 0 , divγ (ELω(γ)) = 0

where ELω is the Euler-Lagrange operator associated to the Lagrangian density
Lω as a problem without constraints.

Example 2 H-minimal Lagrangian submanifolds

Given a symplectic manifold (M2n, Ω2) endowed with a Riemannian metric g,
as is known, this theory deals with the study of Lagrangian submanifolds Xn ⊆
M2n (i.e.,Ω2|Xn

= 0) that minimize the functional Xn 7→ g-area of Xn, with
respect to certain variations (“Hamiltonian” variations), that conserve the
“Lagrangianity”. Given one of these submanifolds, according to the Darboux-
Weinstein Theorem, there exists a symplectic diffeomorphism of a tubular
neighborhood of X ⊆ M with a neighborhood of the zero section in T ∗X,
which inherits the Riemannian structure given on M . Taking into account
that a section η : X → T ∗X is Lagrangian if and only if dη = 0, the problem
transforms into a constrained variational problem with constraint submanifold

S = {j1
xη / (dη)x = 0} and variation algebra AS = dC∞(X) ⊕ X̃(X) given by

the vertical vector fields defined by exact 1-forms on X and by the natural
lifting of vector fields from X to T ∗X. The Lagrangian density in this example
is the functional Lω : η 7→ g-area element of η.

The parametrization condition 2.2 holds again taking as bundle of param-
eters the trivial bundle E = T ∗X × R and the morphism P : (j1

xη, j1
xf) ∈

J1(E/X) 7→ (j1
xη, (df)x) ∈ V (T ∗X)J1T ∗X defined by the exterior derivative

via the natural identification V (T ∗X) = T ∗X × T ∗X.

The adjoint operator (making the obvious identifications using the metric
tensor g) for the exterior derivative d is the codifferential δ = ∗d∗, where ∗ is
the Hodge operator of the manifold X with respect to its Riemannian metric
tensor. The characterization of critical sections given in corollary 2.5 is then:

dη = 0 , δHη = 0

where Hη is the polar 1-form with respect to the given Riemannian metric g
of the mean curvature vector along the submanifold η.

3 Natural constrained variational problems

In the following, p : Y → X will be a natural bundle [5,6,14,15]. For each
ϕ ∈ Diff(X) let ϕ̃ ∈ Diff(Y ) be the natural lifting of ϕ to Y and for D ∈ X(X)
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let D̃ ∈ X(Y ) be the natural lifting of D to Y .

Definition 3.1 A constrained variational problem with Lagrangian density
Lω on JkY , constraint submanifold S ⊆ JkY and variation algebra AS ⊆
X(k)(Y ) is natural if:

(1) The bundle p : Y → X is natural
(2) The natural liftings D̃(k) ∈ X(k)(Y ) of vector fields D ∈ X(X) are in-

finitesimal symmetries of the constrained variational problem, i.e., D̃(k) ∈
AS and LD̃(k)

(Lω) = 0.

Moreover, we shall assume that these variational problems satisfy the following
refinement of condition 2.2 of parametrization:

Condition 3.2 (Natural parametrization condition)

(1) The bundle of parameters q : E → Y is natural (considered as a bundle
over X), so that for each ϕ ∈ Diff(X), the natural lifting ϕ̃E on E is
q-projected onto the natural lifting ϕ̃ on Y .

(2) The vector bundle morphism P : J1(E/X)J1Y → V YJ1Y is natural and
hence so are the parametrization operators Ps : Γ(X, s∗E) → Γ(X, s∗V Y ),
s ∈ Γ(X, Y ), that is:

Pϕ·s(ϕ · e) = ϕ · Ps(e) , ∀e ∈ Γ(X, s∗E)

where ϕ·s = ϕ̃◦s◦ϕ−1, ϕ·(Ps(e)) = ϕ∗◦(Ps(e))◦ϕ−1 and ϕ·e = ϕ̃E◦e◦ϕ−1.
(3) The induced morphism D ∈ X(X) 7→ (D̃(k))

v
s ∈ Γ(X, s∗V Y ) factors

through Ps by natural first order differential operators Js : X(X) → Γ(X, s∗E),
i.e:

Ps ◦ Js(D) = (D̃(k))
v
s

Jϕ·s(ϕ ·D) = ϕ · Js(D)

∀s ∈ ΓS(X, Y )

∀D ∈ X(X)

Remark 3.3 In the case of natural variational problems without constraints,
E = V Y , P = Id and Js is the natural lifting:

Js : X(X) → Γ(X, s∗V Y )

D 7→ D̃v
s

If Js is a first order differential operator, we have described in [6] how to define
a stress-energy-momentum tensor using the symbol of the operators Js.

As a first result towards this objective for the constrained case, we have:

Proposition 3.4 The Euler-Lagrange operator P+E : s ∈ ΓS(X, Y ) 7→ P+
s E(s) ∈

Γ(X, s∗E∗ ⊗ ΛnT ∗X) of a natural constrained variational problem satisfying
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the natural parametrization condition 3.2 is Diff(X)-covariant, i.e.:

P+E(ϕ · s) = ϕ · P+E(s) (3.1)

where ϕ· stands for the natural operation of Diff(X) on the different objects
where it is applied.

PROOF. For the covariance of Euler-Lagrange operator E(s) of Lω as a
problem without constraints, see [13,16]:

E(ϕ · s) = ϕ · E(s) (3.2)

Now in the case of constrained problems, from the naturalness of the differ-
ential operator P :

ϕ · (Ps(e)) = Pϕ·s(ϕ · e)
and from the definition of the adjoint operators P+

s and P+
ϕ·s we get:

〈Pϕ·s(ϕ · e), Eϕ·s〉 = 〈ϕ · e, P+
ϕ·s(Eϕ·s)〉+ d (〈σPϕ·s(ϕ · e), Eϕ·s〉)

〈Pϕ·s(ϕ · e), Eϕ·s〉 = 〈ϕ · Ps(e), Eϕ·s〉 = ϕ · 〈Ps(e), ϕ
−1 · Eϕ·s〉 =

= ϕ · 〈e, P+
s (ϕ−1 · Eϕ·s)〉+ d

(
ϕ · 〈σPs(e), ϕ

−1 · Eϕ·s〉
)

=

= 〈ϕ · e, (ϕ · P+
s )(Eϕ·s)〉+ d

(
ϕ · 〈σPs(e), ϕ

−1 · Eϕ·s〉
)

for any section Eϕ·s ∈ Γ(X, (ϕ · s)∗V Y ∗ ⊗ ΛnT ∗X), and for the natural defini-
tions of ϕ· on the different objects. By uniqueness of the adjoint operator, we
conclude that:

ϕ · P+
s = P+

ϕ·s , ϕ · σPs = σPϕ·s (3.3)

Taking both equalities (3.2) and (3.3) we get (3.1), proving the proposi-
tion. 2

On the other hand, consideration of the first order differential operators Js,
s ∈ ΓS(X, Y ) from point (3) in the natural parametrization condition 3.2
allows for this kind of variational problems to define a multi-momentum map
associated to the Lie algebra X(X) of vector fields on X, by the rule:

Definition 3.5 We shall call the multi-momentum map of the problem the
map µ : ΓS(X,Y ) → X(X)∗ ⊗ Λn−1T ∗X given by:

µ(s)(D) = (j2k−1s)∗iD̃(2k−1)
Θ + 〈σPs(Js(D)), E(s)〉 , D ∈ X(X) (3.4)

where Θ is a Poincaré-Cartan form of the Lagrangian density Lω as a varia-
tional problem without constraints.

From this concept, which depends on the chosen Poincaré-Cartan form, we
are in a situation to prove the main result of this section:
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Theorem 3.6 (Main Theorem) Given a natural constrained variational prob-
lem, there holds:

(1) For each section s ∈ ΓS(X, Y ) there exists a unique tensor T (s) : X(X) →
Γ(X, Λn−1T ∗X) such that, for any multi-momentum map µ associated to
the problem and any vector field D ∈ X(X), there holds:

iDT (s) = µ(s)(D) + dα (3.5)

where α is a (n− 2)-form on X depending on Θ, (P, Js) and D.
(2) The tensor T (s) is explicitly given by:

iDT (s) = −(P+E(s))(σJs(D)) (3.6)

where P+E is the Euler-Lagrange operator of the constrained variational
problem, σJs is the symbol of the operator Js which defines the natural
parametrization, and the contractions are the obvious ones.

(3) The assignment s ∈ ΓS(X,Y ) 7→ T (s) ∈ Γ(X, T ∗X ⊗ Λn−1T ∗X) is
Diff(X)-covariant, that is, for every diffeomorphism ϕ ∈ Diff(X) one
has:

T (ϕ · s) = ϕ · (T (s))

where ϕ·s = ϕ̃◦s◦ϕ−1, (ϕ·(T (s)))(ϕ∗D) = (ϕ−1)∗(T (s)(D)), ϕ̃ : Y → Y
being the natural lifting of ϕ on the bundle p : Y → X

PROOF. Considering the first variation formula (2.5) and the definition (3.4)
of the multi-momentum map µ for symmetries D̃, we get:

0 = (jks)∗LD̃(k)
(Lω) = 〈Js(D), P+E(s)〉+ d(µ(s)(D)) =

= 〈D, J+
s ◦ P+

s E(s)〉+ d
(
µ(s)(D) + 〈σJs(D), P+E(s)〉

)
But, as we know from the proof of Proposition 2.3, there are no non-trivial
morphisms of vector bundles from TX to ΛnT ∗X that factor through the
exterior derivative, hence:

J+
s ◦ P+

s E(s) = 0 , d
(
µ(s)(D) + 〈σJs(D), P+E(s)〉

)
= 0 (3.7)

The differential operator µ(s)+ (P+E(s))(σJs) takes values on closed (n− 1)-
forms. The Λn−1T ∗X-valued 1-covariant tensor −(P+E(s))(σJs) is indepen-
dent on the choice of Θ and differs from the multi-momentum map in a closed
(n− 1)-form. Applying the same general principle as in [6, see p.52], the dif-
ference is an exact (n− 1)-form. We thus obtain the proof of (3.5) and (3.6)

For the uniqueness, as we saw in the proof of Proposition 2.3, there are no vec-
tor bundle morphisms between TX and Λn−1T ∗X that take values on closed
(n−1)-forms except for the trivial one. Thus, if T (s) and T ′(s) satisfy (3.5) for
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some choice of the multi-momentum map (depending on the chosen Poincaré-
Cartan form), T (s) = T ′(s). The explicit formula (3.6) will ensure the inde-
pendence of this uniqueness from the chosen µ.

Following Proposition 3.4, we have P+E(ϕ·s) = ϕ·P+E(s) and the naturalness
assumption on J produces σJϕ·s = ϕ·σJs. The combination of both expressions
yields the Diff(X)-covariance. 2

Equation (3.5) characterizing the stress-energy-momentum tensor T (s) can
be interpreted as a generalization to natural constrained variational problems
of the “Belinfante-Rosenfeld formula”, from which this tensor is obtained by
adding to the value µ(s) ∈ HomR(X(X), Γ(X,T ∗X⊗Λn−1T ∗X)) of the multi-
momentum map (which is not a tensor) a “corrective term” given by the
last summand of that formula. On the other hand, (3.6) constitutes the basic
formula that will allow us to generalize in the constrained variational calculus
the classic Hilbert expression T (s) = δL

δg
of the stress-energy-momentum tensor

to the case that the natural problem has a metric as parameter.

4 Natural constrained variational problems depending on a metric

Recalling the case of problems without constraints [6, see §4], let Lω be a
natural Lagrangian density on the k-jet bundle Jk(M×X Y ) of the natural
fibred product π × p : M×X Y → X, where π : M → Y is the bundle of
nonsingular metrics of given signature on X and where p : Y → X is a nat-
ural bundle. If ωM is the horizontal volume element on M×X Y given by
(ωM)(gx,yx) = (π × p)∗ωgx (ωg =volume element associated to the metric ten-
sor g), then the Lagrangian density Lω can be expressed in the form LωM,
where L ∈ C∞(Jk(M×X Y )) is an invariant function for the natural action
of Diff(X) on Jk(M×X Y ). In these conditions for each metric g the natural
immersion of bundles on X, ig : Y ↪→M×X Y , defines a Lagrangian density
on JkY by the rule: Lgωg = (jkig)

∗(LωM), thus obtaining a family {Lgωg}
of Lagrangian densities on JkY parametrized by metrics g ∈ Γ(X,M) on X.
Following this approach, seeking our objective, how can we introduce the “con-
straints”, “parametrization conditions”, “naturalness”, etc. in the variational
problem LωM on Jk(M×X Y ) and in the family {Lgωg} on JkY ?.

First of all, we shall consider a constraint submanifold S ⊆ Jk(M ×X Y )
and a variation algebra AS ⊆ X(k)(M×X Y ) for the variational problem with
Lagrangian density LωM on Jk(M×XY ) without any restriction on the metric
component of the problem in a sense which will be made clear below.

On the other hand, the constrained variational problem we shall consider will
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be a natural one (definition 3.1) endowed with a natural parametrization (P, J)
(condition 3.2) whose bundle of parameters is (S2T ∗X⊕E)M×XY (E a natural
vector bundle on Y ) and where the parametrization operator P(g,s) along any
section (g, s) ∈ ΓS(X,M×X Y ) has the form:

P(g,s) : Γ(X, S2T ∗X ⊕ (g, s)∗E) → Γ(X, S2T ∗X ⊕ s∗V Y )

(S2, e) 7→ (S2, P
Y
(g,s)(S2, e))

Under these conditions, for any metric g, the submanifold Sg = (jkig)
−1S ⊆

JkY and the algebra

AY
Sg

= {DY ∈ X(k)(Y ) / (jkig)∗(DY ) = D|Im(jkig) for some D ∈ AS}

define a constrained variational problem for the Lagrangian density Lgωg on
JkY .

As additional hypothesis in this framework, we shall assume that, for any ad-
missible section (g, s) ∈ ΓS(X,M×X Y ), the differential operators P Y

(g,s)

∣∣∣
0⊕s∗E

define a parametrization for the subspaces of infinitesimal admissible varia-

tions
(
ASg

)v

s
and

(
ASg

)c

s
for the latter variational problem.

From this point, proceeding as in the case without constraints [6, Definition
4.1] we may give the following:

Definition 4.1 The stress-energy-momentum tensor of the constrained vari-
ational problem with Lagrangian density Lgωg on JkY , constraint submani-
fold Sg ⊆ JkY and variation algebra ASg ⊆ X(k)(Y ), is the correspondence
that assigns to each admissible section s ∈ ΓSg(X,Y ) the tensor Tg(s) =
T (g, s), where T is the stress-energy-momentum tensor corresponding to the
section (g, s) ∈ ΓS(X,M×X Y ) of the natural constrained variational prob-
lem with Lagrangian density LωM on Jk(M×X Y ), constraint submanifold
S ⊆ Jk(M×X Y ) and variation algebra AS ⊆ X(k)(M×X Y ).

Using the volume element ωg the tensor Tg(s) ∈ Γ(X,T ∗(X)⊗Λn−1T ∗X) can
be seen as a 1-covariant, 1-contravariant tensor (Tg)

1
1(s) ∈ Γ(X,TX ⊗ T ∗X)

defined by i(Tg)11(s)(K)ωg = Tg(s)(K) or, lowering or raising an index by means

of g, we get the tensors (Tg)2(s) ∈ Γ(X, T ∗X⊗T ∗X) or (Tg)
2(s) ∈ Γ(X, TX⊗

TX). We shall use the different versions of (Tg)(s) as we need them.

The tensor we have just defined satisfies two new properties (Hilbert’s formula
and the divergence formula) whose precise statement is given below.

As is well known [6, see (3.12)], for any vector field K ∈ X(X), its natural lift-
ing K̃M on the bundle M has a vertical component (K̃M)v

g ∈ Γ(X, g∗VM) =
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Γ(X, S2T ∗X) along a section g ∈ Γ(X,M) given by the expression:

(K̃M)v
g = −LKg = −2 Sym(d5g iKg)

where Sym is the symmetrization operator and d5g is the covariant derivative
with respect to the Levi-Civita connection 5g associated to the metric g.
Thus, as P(g,s) ◦ J(g,s)(K) = ((K̃M)v

g, (K̃
Y )v

s) = (−2 Sym(d5g iKg), (K̃Y )v
s) the

differential operators J(g,s) must be of the form:

J(g,s)(K) = (−2 Sym(d5g iKg), JE
(g,s)(K)) ∈ Γ(X, S2T ∗X⊕(g, s)∗E) , K ∈ X(X)

(4.1)
On the other hand, let P S2

(g,s) : S2 ∈ Γ(X,S2T ∗X) 7→ P Y
(g,s)(S2, 0) ∈ Γ(X, s∗V Y )

and PE
(g,s) : e ∈ Γ(X, (g, s)∗E) 7→ P Y

(g,s)(0, e) ∈ Γ(X, s∗V Y ) be the differen-

tial operators induced by the parametrization operator P Y
(g,s) and EM(g, s) ∈

Γ(X,S2TX⊗ΛnT ∗X) and EY (g, s) ∈ Γ(X, (s∗V Y )∗⊗ΛnT ∗X) the two compo-
nents given by the decomposition (g, s)∗V (M×X Y ) = g∗VM⊕ s∗V Y of the
Euler-Lagrange operator associated to LωM as a problem without constraints.
In this situation, there holds:

Theorem 4.2 The stress-energy-momentum tensor (Tg)(s) is given by:

(Tg)(s) = 2
(
EM + (P S2

)+EY

)1

1
(g, s)− ((PE)+EY )(g, s) · σJE(g, s) (4.2)

where for S2TX-valued n-forms E, the expression E1
1 represents the corre-

sponding T ∗X-valued (n− 1)-form defined by E1
1 (K) = c1

1(ig(K)E).

PROOF. Formula (3.6) for the natural problem (π × p, LωM, S,AS) leads
to:

Tg(s) = T (g, s) = −P+
(g,s)(EM(g, s), EY (g, s)) · σJ(g,s) (4.3)

where the terms can be easily calculated:

P+
(g,s)(EM(g, s), EY (g, s)) = (EM(g, s), 0) + (P Y

(g,s))
+EY (g, s) =

=
(
EM + (P S2

)+EY , (PE)+EY

)
(g, s)

whose first component is a symmetric tensor. The symbol of J(g,s), following
(4.1) is:

σJ(g,s)(K, θ) = [−2 Sym(iKg ⊗ θ), σJE
(g,s)(K, θ)] , K ∈ X(X), θ ∈ X(X)∗

Substituting these expressions in (4.3) produce:

Tg(s) = 2
(
EM(g, s) + (P S2

(g,s))
+EY (g, s)

)1

1
− (PE

(g,s))
+EY (g, s) · σJE

(g,s)

thus proving the theorem. 2
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Due to the latter hypothesis of our setting, the second component (PE)+EY

in the formula is the Euler-Lagrange operator of the constrained problem
(p, Lgωg, Sg,AY

Sg
). Thus, we obtain:

Corollary 4.3 (Hilbert’s Formula) If s ∈ ΓSg(X, Y ) is a critical section of
the constrained variational problem (p, Lgωg, Sg,ASg) or if the natural lifting
K 7→ JE

(g,s)(K) has differential order 0, there holds:

(Tg)2(s) = 2

[
δLωM

δg
+
(
P S2

(g,s)

)+ δLωM
δy

]
(4.4)

PROOF. It follows from (4.2), where the component ((PE
(g,s))

+EY (g, s)) ·
σJE

(g,s) vanishes if s ∈ ΓSg(X, Y ) is critical (i.e. (PE
(g,s))

+EY (g, s) = 0) or if

JE
(g,s) has differential order 0 (i.e. σJE

(g,s) = 0). 2

Corollary 4.4 (Divergence formula)

divg((Tg)2(s))⊗ ωg =− (JE
(g,s))

+((PE)+EY (g, s))

− divg

(
((PE)+EY )(g, s) · σJE(g, s)

)
2
⊗ ωg

(4.5)

In particular, for any critical section s ∈ ΓSg(X, Y ) of (p, Lgωg, Sg,ASg), there
holds:

divg(Tg)2(s) = 0

PROOF. The divergence of any 2-covariant tensor E2 ∈ Γ(X, S2T ∗X) can
be given in terms of the differential operator K ∈ X(X) 7→ 2 Sym(d5g iKg) ∈
Γ(X, S2T ∗X) as in [6, see 4.8], obtaining for any E = (EM, EY ) ⊗ ωg ∈
Γ(X, (S2TX ⊕ s∗V ∗Y )⊗ ΛnT ∗X) the expression:

(J(g,s))
+(E) = divg(EM)2 ⊗ ωg + (JE

(g,s))
+ (EY ⊗ ωg)

For the Euler-Lagrange operator E =
(
2(EM + (P S2

)+EY )2 ⊗ ωM, (PE)+EY

)
we know by (3.7) that J+E(g, s) = 0, so

divg 2(EM + (P S2

)+EY )2(g, s)⊗ ωg = −(JE
(g,s))

+((PE)+EY )(g, s)

Hence, the divergence of the stress-energy-momentum tensor given by formula
(4.2) is

(divg(Tg)2(s))⊗ ωg =

= divg 2(EM + (P S2)+EY )2(g, s)⊗ ωg − divg

(
((PE)+EY ) · σJE

)
2
(g, s)⊗ ωg =

= −(JE
(g,s))

+((PE)+EY (g, s))− divg

(
((PE)+EY )(g, s) · σJE(g, s)

)
2
⊗ ωg
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thus proving the formula. 2

The divergence formula (4.5) gives a necessary condition divg(Tg)2(s) = 0 for
a section s ∈ ΓSg(X, Y ) to be critical ((PE)+EY (g, s) = 0). Depending on
the differential operators JE, this could also be a sufficient condition (see the
example of the relativistic fluid).

5 Examples

Examples 1 and 2 which we have studied in section 2 have been cases of
non-natural problems with a mainly geometric interest. In this section we are
going to illustrate the theory with two typical natural problems arising from
Physics: the electromagnetic field and the relativistic fluids on space-time with
a Lorentz metric as parameter.

Example 3 Electromagnetism

In [6] this theory was developed as a natural variational problem without
constraints on J1(M×X4 T ∗X4), where π : M→ X4 is the bundle of Lorentz
metrics on a 4-dimensional manifold X4 and p : T ∗X4 → X4 is the bundle of
“electromagnetic potentials”, A, describing the electromagnetic field by F =
dA. In this section we will tackle this problem in terms of the electromagnetic
field F without making use of the potentials.

Let us consider on the bundle π × p : M×X4 Λ2T ∗X4 → X4 the 0-order La-
grangian density given by L(g, F )ωM = Lg(F )ωg = 1

2
‖F‖2

gωg. Consider the
first order constraint on (g, F ) ∈ Γ(X4,M×X4 Λ2T ∗X4) given by the subman-
ifold S = {j1

x(g, F ) ∈ J1(M×X4 Λ2T ∗X4) / (dF )x = 0}. Admissible sections
are 2-forms F on X4 which satisfy the first group of Maxwell’s equations
dF = 0. In order to fix the variation algebra AS on J1(M×X4 Λ2T ∗X4) tan-
gential to S, we consider, through the natural identification V(gx,Fx)(M×X4

Λ2T ∗X4) = S2T ∗
xX4 ⊕ Λ2T ∗

xX4, vertical vector fields DS2 defined by sec-
tions S2 ∈ Γ(X4, S

2T ∗X4), vertical vector fields Ddη defined by closed 2-forms
dη ∈ dΩ1

c that are exterior derivatives of 1-forms η with compact support, and
vector fields K̃ given by the natural lifting of vector fields X(X4) to the bundle
M×X4 Λ2T ∗X4. The variation algebra AS is going to be the 1-jet extension

to J1(M×X4 Λ2T ∗X4) of the above defined algebra S2T ∗X ⊕ dΩ1
c ⊕ X̃(X4).

Its infinitesimal admissible variations are given by

Dv
(g,F ) = (S2 − LKg, d(η̄ − iKF ))

for any D = DS2 + Ddη + K̃ ∈ S2T ∗X ⊕ dΩ1
c ⊕ X̃(X4).
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The natural parametrization of this natural constrained variational problem
is given by:

P : J1(S2T ∗X4 ⊕ T ∗X4) → V (M×X4 Λ2T ∗X4)

j1
x(S2, A

′)(g,F ) 7→ (S2(x), (dA′)x)(gx,Fx)

J(g,F ) : X(X4) → Γ(X4, S2T
∗X4 ⊕ T ∗X4)

K 7→ (−LKg,−iKF )

Fixing the metric g, the constrained variational problem defined on p : T ∗X4 →
X4 will be given by Lagrangian density Lg(F )ωg = 1

2
‖F‖2

gωg, constraint sub-

manifold Sg = {j1
xF / (dF )x = 0} , variation algebra ASg = dΩ1

c ⊕ X̃(X4), and
parametrization operator PE

(s,g) : A′ ∈ Γ(X4, T
∗X4) 7→ dA′ ∈ Γ(X4, Λ

2T ∗X4).

In this case adjunction formula (2.3) can be expressed as

〈dA′, E〉gωg = 〈A′, δgE〉gωg + d (∗gE ∧ A′) , ∀E ∈ Γ(X4, Λ
2T ∗X4)

where ∗g is Hodge’s operator defined by 〈η2, E〉gωg = ∗gE ∧ η2 and δg =
∗−1

g ◦ d ◦ ∗g.

The linear component in A′ gives the expression for the adjoint operator
(PE)+

F : E ∈ Γ(X4, Λ
2T ∗X4) 7→ δgE ∈ Γ(X4, T

∗X4) and the second component
gives the morphism (σPE)F : (A′, E) ∈ Γ(X4, T

∗X × Λ2T ∗X4) 7→ ∗gE ∧ A′ ∈
Γ(X4, Λ

3T ∗X4).

If Eg(F )⊗ ωg is the value of the Euler-Lagrange operator at some admissible
section F ∈ ΓSg(X4, Λ

2T ∗X4) as a problem without constraints (Eg(F ) ∈
Γ(X4, Λ

2T ∗X4) and duality given by the scalar product of 2-forms w.r.t. g),
the corresponding first variation formula (2.5) for the constrained problem will
be given by:

F ∗LD(Lgωg) = 〈A′, δgEg(F )〉gωg + d [F ∗iD(Lgωg) + ∗gEg(F ) ∧ A′]

where A′ = η̄ − iKF is the 1-form that parametrizes the vertical component
Dv

F = dη̄ − LKF along F of the variation D = Ddη̄ + K̃ ∈ ASg .

For Lgωg(F ) = 1
4
‖F‖2

gωg, the Euler-Lagrange operator is Eg(F )⊗ωg = F ⊗ωg

and the first variation formula will be:

F ∗LD(Lgωg) = 〈A′, δgF 〉gωg + d
[
1

2
‖F‖2

giKωg + ∗gF ∧ A′
]

where D = Ddη̄ + K̃ and A′ = η̄ − iKF
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The Euler-Lagrange operator P+E for the variational problem with constraints
(p, Lgωg, Sg,ASg) is hence given by:

P+E(F ) = δgF

where the duality with F ∗V (Λ2T ∗X4) is given by 〈 , 〉gωg. Critical sections are
characterized by:

dF = 0 , δgF = 0

Coming back to the natural problem defined on π × p : M×X4 T ∗X4 → X4,
as in this case JT ∗X4

(g,F ) : K ∈ X(X4) 7→ −iKF ∈ Γ(X4, T
∗X4) has differential

order 0 and P S2

(g,F ) = 0, Hilbert’s formula (4.4) gives the explicit expression of
stress-energy-momentum tensor for this constrained variational problem:

(Tg)2(F ) = 2
δLωM

δg
=

1

2
‖F‖2

g · g − F 1
1 · F2

This tensor doesn’t coincide with the tensor obtained in [6] for the electro-
magnetic field described in terms of electromagnetic potentials. That tensor
(Tg)2(A) = 1

2
‖dA‖2

g · g − (dA)1
1 · (dA)2 − A ⊗ δg(dA) was not proyectable

to Λ2T ∗X4 but coincides with the one obtained here along critical sections.
This difference is due to the fact that the multi-momentum map provided
by the theory of electromagnetic potentials doesn’t project to the bundle of
electromagnetic intensities Λ2T ∗X4. The Stress-energy-momentum tensors in
each case are related to different multi-momentum maps that coincide up to
a closed term.

Example 4 Relativistic fluids

As is well known a relativistic perfect fluid on a Lorentz manifold (X4, g) is a
divergence-free time-like vector field D on X4 (divg D = 0 and g(D, D) < 0)
which satisfies Euler’s equation. Condition divg D = 0 can be interpreted as a
constraint for a variational problem on the bundle M×X4 TX4, that is, the
constraint submanifold S = {j1

x(g,D) / (divg D)(x) = 0} ⊆ J1 (M×X4 TX4).

Making use of the 1-jet extension j1Φ of the bundle isomorphism Φ: (gx, Dx) ∈
M×X4 TX4 7→ (gx, iDxωgx) ∈M×X4 Λ3T ∗X4, the submanifold S transforms
into S = j1Φ(S) = {j1

x(g, ω3) / (dω3)(x) = 0} which allows us to deal with the
constraint by separating the metric and the fluid variables.

This suggests dealing with relativistic fluids as a constrained variational prob-
lem with Lagrangian density LωM on J1(M×X4 Λ3T ∗X4), constraint subman-

ifold S = {j1
x(g, ω3) / (dω3)x = 0} and variation algebra AS = S2T ∗X4⊕X̃(X4)

defined in the same way as in the previous example.

19



The infinitesimal admissible variations are now:

Dv
(g,ω3) = (S2 − LKg,−diKω3)

for any D = DS2 + K̃ ∈ AS.

A natural parametrization can be given by:

P : J1(S2T ∗X4 ⊕ TX4)M×X4
Λ3T ∗X4

→ V (M×X4 Λ3T ∗X4)

j1
x(S2, K)(g,ω3) 7→ (S2(x),−diKω3)(g,ω3)(x)

J(g,ω3) : X(X4) → Γ(X4, S2T
∗X4 ⊕ TX4)

K 7→ (−LKg,K)

In this case, for a fixed metric g, the constrained variational problem on
p : TX4 → X4 will be given by a Lagrangian density Lgωg = (jkig)

∗(LωM),
constraint submanifold Sg = {j1

xω3 / (dω3)x = 0}, variation algebra ASg =

X̃(X4) and parametrization operator:

PE
(g,ω3) : K ∈ Γ(X4, TX4) 7→ −diKω3 ∈ Γ(X4, Λ

3T ∗X4)

Then the adjunction formula (2.3) is analogous to the previous example:

〈−diKω3, E〉gωg = 〈iKω3,−δgE〉gωg + d (∗gE ∧ −iKω3) ∀E ∈ Γ(X4, Λ
3T ∗X4)

and, by simple algebraic manipulations, can be expressed as:

〈−diKω3, E〉gωg = 〈iKg, iDd ∗g E〉gωg + d (∗gE ∧ −iKω3)

where D is the field describing the fluid: iDωg = ω3.

The adjoint operator (PE
(g,ω3))

+ and the morphism σPE
(g,ω3) are given by:

(PE
(g,ω3))

+ : E ∈ Γ(X4, Λ
3T ∗X4) 7→ iDd ∗g E ∈ Γ(X4, T

∗X4)

σPE
(g,ω3) : (K, E) ∈ Γ(X4, TX4 ⊕ Λ3T ∗X4) 7→ ∗gE ∧ −iKω3 ∈ Γ(X4, Λ

3T ∗X4)

If Eg(ω3)⊗ ωg is the value of the Euler-Lagrange operator at some admissible
section ω3 ∈ ΓSg(X4, Λ

3T ∗X4) as a problem without constraints (Eg(ω3) ∈
Γ(X4, Λ

3T ∗X4) and duality given by the scalar product of 3-forms w.r.t. g),
the corresponding first variation formula (2.5) for the constrained problem will
be given by:

(jkω3)
∗LK̃(k)(Lgωg) =

= iK (iDd ∗g Eg(ω3)) ωg + d
[
((j2k−1ω3)

∗iK̃(2k−1)Θ− ∗gEg(ω3) ∧ iKω3)
]
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Hence, the equations (2.7) that characterize critical sections are:

dω3 = 0 , iDd ∗g Eg(ω3) = 0

In particular, perfect fluids are defined by 0-order natural Lagrangian densities

LωM(g, ω3) = Lgωg with Lg = F (ρ) (where ρ =
√
−g(D, D)), so that the

equations that characterize critical sections are:

dω3 = 0 , iDd

(
−F ′(ρ)

ρ
iDg

)
= 0

which, interpreted via the isomorphism Φ: M×X4 TX4 → M×X4 Λ3T ∗X4,

expressing the Lagrangian as Lg = −ρ(1 + ε(ρ)) and defining p = ρ2 dε(ρ)
dρ

,

µ = ρ(1 + ε(ρ)) take the standard form of Euler equations:

divg ρU = 0 , U(p)ωU + dp + (µ + p)U5gωU = 0

where U = D
ρ
, ωU = iUg and 5g is the Levi-Civita connection of g.

Coming back to the variational problem on M×X4 Λ3T ∗X4, using Hilbert’s
formula (4.4) we may give stress-energy-momentum tensors for these problems.

As JTX4

(g,ω3) = Id has differential order 0 and P S2T ∗X4

(g,ω3) (S2) = 0, we have:

(Tg)2(ω3) = 2
δLωM

δg

for any admissible section ω3 ∈ ΓSg(X4, Λ
3T ∗X4).

Using the divergence formula (4.5) in this case, where JTX4

(g,D) = Id, the diver-
gence of this tensor is:

divg

(
(Tg)

1
1(ω3)

)
= −iDd(∗gEg(ω3))

thus, critical sections for the constrained variational problem Lgωg on Λ3T ∗X4

are characterized by the constraint and the vanishing of its stress-energy-
momentum tensor.

In the case of perfect fluids Lg(ω3) = F (ρ) = −ρ(1 + ε(ρ)), the stress-energy-
momentum tensor and its divergence take the form:

(Tg)
2(D) = µU ⊗ U + p(U ⊗ U + g−1)

divg

(
(Tg)

1
1(D)

)
= U(p)ωU + dp + (µ + p)U5gωU

Remark 5.1 In this case the stress-energy-momentum tensor coincides with
the one given in [6] for the variational problem without constraints given by
the hydrodynamic potentials. This is due to the fact that the multi-momentum
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map in that case can be projected to the bundle M×X4 Λ3T ∗X4 as the multi-
momentum map of the constrained problem.
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