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Departamento de Matemáticas, Universidad de Salamanca, E-37008 Salamanca,
Spain

Preprint version

Journal of Geometry and Physics 56(4) 571-610 (2006)

Abstract

Given a constrained variational problem on the 1-jet extension J1Y of a fibre bundle
p : Y → X, under certain conditions on the constraint submanifold S ⊂ J1Y , we
characterize the space of admissible infinitesimal variations of an admissible section
s : X → Y as the image by a certain first order differential operator, Ps, of the
space of sections Γ(X, s∗V Y ). In this way we obtain a constrained first variation
formula for the Lagrangian density Lω on J1Y , which allows us to characterize
critical sections of the problem as admissible sections s such that P+

s ELω(s) = 0,
where P+

s is the adjoint operator of Ps and ELω(s) is the Euler-Lagrange operator of
the Lagrangian density Lω as an unconstrained variational problem. We introduce a
Cartan form on J2Y which we use to generalize the Cartan formalism and Noether
theory of infinitesimal symmetries to the constrained variational problems under
consideration. We study the relation of this theory with the Lagrange multiplier
rule as well as the question of regularity in this framework. The theory is illustrated
with several examples of geometrical and physical interest.
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1 Introduction

The problem of Lagrange in the Calculus of Variations on fibred manifolds
can be established as follows:

Let Lω be a Lagrangian density on the 1-jet extension J1Y of a fibre bun-
dle p : Y → X on an n-dimensional oriented manifold X (L ∈ C∞(J1Y )
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and ω a volume element on X) and let S be a submanifold of J1Y such
that (j1p)(S) = X (the constraint). A section s is said to be admissible if
Im(j1s) ⊂ S, and given an admissible section s an admissible infinitesimal
variation of s is a p-vertical vector field along s, Dv

s ∈ Γ(X, s∗V Y ) whose
1-jet extension j1Dv

s is tangential to the submanifold S along j1s. The La-
grangian density defines on the set ΓS(X, Y ) of admissible sections the func-
tional L(s) =

∫
j1s Lω and, given s ∈ ΓS(X,Y ), if Ts(ΓS(X, Y )) is the vector

space of admissible infinitesimal variations of s, the differential of L at s is de-
fined as (δsL)(Dv

s ) =
∫
j1s Lj1Dv

s
(Lω), for Dv

s ∈ Ts(ΓS(X, Y )). In this situation,
an admissible section s ∈ ΓS(X, Y ) is said to be critical for the constrained
variational problem defined by the pair (Lω, S ⊂ J1Y ) when δsL = 0 on
the subspace T cs (ΓS(X,Y )) of infinitesimal admissible variations with com-
pact support; the main objective of the problem of Lagrange is to determine
these critical sections.

The traditional method to solve this problem has been the so-called Lagrange
multiplier rule, which assumes that the constraint submanifold may be ex-
pressed in the form S = {j1

xs ∈ J1Y /Φ(j1
xs) = 0}, where q : E → Y is a

vector bundle on Y and Φ: J1Y → E is a bundle morphism on E satisfying
certain regularity conditions (the Hypothesis (HY1) of §3).

Assuming this, if one considers the unconstrained variational problem on
J1(Y ×Y E∗) (where E∗ is the dual bundle of E) of Lagrangian density
(L + λ ◦ Φ)ω, where λ ∈ Γ(J1(Y ×Y E∗), E∗) is the tautological section
λ(j1

x(s, λ)) = λ(x) and ◦ denotes the bilinear duality product, it holds that
if (s, λ) ∈ Γ(X,Y ×Y E

∗) is critical for the unconstrained variational prob-
lem (L + λ ◦ Φ)ω then s ∈ Γ(X, Y ) is critical for the constrained variational
problem (Lω, S ⊂ J1Y ).

In this way one may define a mapping:

Π: Γcrit(X, Y ×Y E
∗) → Γcrit(X, Y )

from the set of critical sections of the unconstrained variational problem (L+
λ ◦ Φ)ω to the set of critical sections of the constrained variational problem
(Lω, S ⊂ J1Y ), that need not be injective nor surjective. A fundamental
question of the problem of Lagrange is to determine sufficient conditions which
allow us to ensure the surjectivity of Π.

In this paper we prove that, by imposing another condition on the constraint
submanifold S (the Hypothesis (HY2) of §3), it is possible to invert the map-
ping Π on the sections s ∈ Γcrit(X,Y ) such that Imj1s belongs to a certain
dense open subset of S, which solves the problem of Lagrange for this class
of constrained variational problems in the best possible way. Moreover, this
method allows us to associate to these problems a Cartan form with which we
extend the corresponding Hamilton-Cartan formalism and Noether theory of
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infinitesimal symmetries from the unconstrained variational calculus, which
has been so intensely studied in the literature (see, for example [1,4,9,12–
15,18–20,24,26,28–30,33,36,37] and references therein). In particular, in the
case of one independent variable, one recovers from this general viewpoint the
also abundant literature on the problem of Lagrange, specially that of the
last years, whose physical and geometrical interest is well known (vakonomic
mechanics, subriemannian geometry, Morse theory for constrained problems,
etc., see for example [2,3,5,21–23,25,34] and references therein).

The interest of the subject has recently increased even more due to the new
approach to the problem of Lagrangian reduction, according to which a certain
kind of variational problems, called reducible, can be reduced to constrained
variational problems of a lower order, which serves as motivation to take these
last problems together with the associated structures as objects of a possible
variational category which includes the Lagrangian reduction procedure as one
of its fundamental operations (see, for example [6–8,10,11,31,35]).

The plan of the work is as follows: After a brief review of the unconstrained
case in §2, where we fix the method and notation, §3 constitutes the core
of our approach where we establish Hypotheses (HY1) and (HY2) on the
constraint submanifold S ⊂ J1Y , which allow us to characterize the space
Ts(ΓS(X, Y )) of infinitesimal admissible variations of an admissible section
s ∈ ΓS(X, Y ) as the image of certain first order linear differential operator,
Ps, on the space of sections Γ(X, s∗V Y ) (Theorem 3.7). This is indeed the
main result of this section, and allows us to obtain a very nice constrained
first variation formula for the Lagrangian density (Theorem 3.8), with which
we may characterize the critical sections of the constrained variational problem
as those admissible sections s ∈ ΓS(X, Y ) such that P+

s ELω(s) = 0, where P+
s

is the adjoint operator of Ps and ELω is the Euler-Lagrange operator of Lω as
an unconstrained variational problem (Corollary 3.9).

In §4 we introduce the Cartan form Θ̃ on J2Y (Definition 4.1) which allows us
to characterize critical sections by means of the corresponding Cartan equation
(Theorem 4.3), and to generalize Noether theory of infinitesimal symmetries
to the constrained variational problems under consideration (Definition 4.4
and Theorem 4.5).

In §5 we study the relation with the Lagrange multiplier rule, proving the
fundamental bijection Π: Γcrit(X, Y ×Y E

∗)−̃→Γcrit(X, Y ). Delving deeper into
this relation, it is also proven that the Cartan forms Θ(L+λ◦Φ)ω and Θ̃ of

both problems can be projected on J1Y ×Y E
∗ to a common n-form Θ̂, so

that the corresponding Cartan and Noether formalisms can be reduced to
this fibred manifold (Theorem 5.1 and Proposition 5.2). Moreover, taking the
restriction of Θ̂ to the submanifold S ×Y E

∗ ⊂ J1Y ×Y E
∗ it is then possible

to state a notion of regularity (Definition 5.3), which allows us to identify
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critical sections of the constrained variational problem with those sections
ŝ = (s, λ) ∈ Γ(X,S ×Y E

∗) that satisfy the Cartan equation ŝ∗i
D̂
dΘ̂ = 0, for

any D̂ ∈ X(S ×Y E
∗) (Theorem 5.5).

In §6 the whole theory is illustrated with some classical examples in one
or more independent variables, with emphasis on the validity of Hypothesis
(HY2), which constitutes the basis of our approach.

The work finishes with an Appendix where we prove that the main results
of the Theory do not depend on the chosen vector bundle q : E → Y nor on
the bundle morphism Φ: J1Y → E that define the constraint submanifold
S = Φ−1(0E).

All manifolds, mappings, tensors, etc. will be considered to be C∞. The notion
of fibre bundle will be understood in an ample sense, that is, a C∞ locally
trivial surjective submersion p : Y → X. Throughout the paper we will use
differential calculus with values in vector bundles, following the reference [27]
without explicitly mentioning it.

2 A review of unconstrained variational calculus

Here, we summarize some aspects of first order unconstrained variational cal-
culus that we shall use. For the purposes of this paper we shall follow the for-
mulation developed in [13]. For other approaches to this topic, see [19,20,26,28]
and references therein.

Let p : Y → X be a fibre bundle over a n-dimensional manifold X, oriented
by a volume element ω. Let J1Y be the 1-jet bundle of local sections of p, and
j1p : J1Y → X and π : J1Y → Y be the canonical projections. If dimY =
n+m and (xν , yj), 1 ≤ ν ≤ n, 1 ≤ j ≤ m is a fibred local coordinate system
for p, we shall denote by (xν , yj, yjν) the natural induced coordinate system for
J1Y , where yjν(j

1
xs) = ((∂/∂xν)(yj ◦ s)) (x) for any section s ∈ Γ(X,Y ).

Definition 2.1 Given a section s ∈ Γ(X, Y ), the vertical differential of s at
a point x ∈ X is the linear mapping (dvs)x : Ts(x)Y → Vs(x)Y given by the
formula:

(dvs)xDs(x) = Ds(x) − (s ◦ p)∗Ds(x), Ds(x) ∈ Ts(x)Y

where V Y is the vertical bundle of the projection p.

This notion allows us to define a 1-form θ on J1Y with values in the induced
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vector bundle V YJ1Y , by the rule:

θj1xs(Dj1xs
) = (dvs)x(π∗Dj1xs

), Dj1xs
∈ Tj1xs(J

1Y )

This is the so called structure 1-form of J1Y , which is locally given by the
expression:

θ =
∑
j

(
dyj −

∑
ν

yjνdx
ν

)
⊗ ∂

∂yj

This 1-form defines the basic structure of J1Y , with which the different notions
on 1-jet bundles are characterized. For example:

A section s ∈ Γ(X, J1Y ) is the 1-jet extension of a section s ∈ Γ(X, Y )
(i.e. s = j1s) if and only if s∗θ = 0. An infinitesimal contact transformation
(i.c.t.) is a vector field D on J1Y such that for any linear connection ∇ on
V Y there exists an endomorphism f of the induced vector bundle V YJ1Y

such that LDθ = f ◦ θ, where the Lie derivative is taken with respect to the
corresponding induced connection and the product “◦” is the obvious one.
This condition does not depend on the connection ∇ and it holds that for
every vector field on Y (not necessarily p-projectable) there exists a unique
i.c.t. j1D projectable into D. Moreover, the map D 7→ j1D is an injection of
Lie algebras. The vector field j1D is called the 1-jet extension of the vector
field D. Locally, if D =

∑
ν u

ν(∂/∂xν) +
∑
j v

j(∂/∂yj) (uν , vj ∈ C∞(Y )), then
its 1-jet extension is: j1D =

∑
ν u

ν(∂/∂xν) +
∑
j v

j(∂/∂yj) +
∑
jν w

j
ν(∂/∂y

j
ν)

where:

wjν =
∂vj

∂xν
+
∑
k

ykν
∂vj

∂yk
−
∑
µ

yjµ

(
∂uµ

∂xν
+
∑
k

ykν
∂uµ

∂yk

)

In what follows we shall denote by X(1)(Y ) the Lie algebra of all the i.c.t’s and
by X(1)

c (Y ) the ideal of this Lie algebra defined by the i.c.t.’s whose supports
have compact image in X.

A first order variational problem on the bundle p : Y → X is defined by a
function L ∈ C∞(J1Y ) (the Lagrangian). The n-form Lω (Lagrangian density)
defines then a functional L : Γ(X, Y ) → R by the rule:

L(s) =
∫
j1s
Lω =

∫
X

(j1s)∗Lω, s ∈ Γ(X,Y )

where L is defined on the sections for which the above integral exists.

For each section s ∈ Γ(X, Y ) we define a linear form δsL : X(1)(Y ) → R by
the rule:

(δsL)(D) =
∫
j1s
LD(Lω), D ∈ X(1)(Y ) (2.1)

Definition 2.2 A section s is critical for the Lagrangian density Lω when
δsL = 0 on X(1)

c (Y ).
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Similar treatments can be given for fixed boundary problems and other situ-
ations.

A central problem of the variational calculus is the characterization of criti-
cal sections as solutions of some differential system defined on a suitable jet
bundle. The notion of Cartan form associated to a Lagrangian density not
only solves this problem, but also allows us to generalize many notions from
analytical mechanics to variational calculus. With the approach that we shall
follow here, this basic concept can be introduced as follows:

Proposition 2.3 (Momentum form) There exists a unique V Y ∗
J1Y -valued

(n− 1)-form ΩLω on J1Y such that ΩLω = iFω, where F is any V Y ∗
J1Y -valued

vector field on J1Y , solution of the equation:

iFdθ = dL

over the π-vertical vector fields of J1Y , where the exterior derivative is taken
with respect to the induced connection on V YJ1Y of a linear connection ∇ on
V Y , and the bilinear products are the obvious ones. The (n − 1)-form ΩLω
does not depend on the choice of the connection ∇.

PROOF. Let (xν , yj, yjν) be a local coordinate system for J1Y and let Γkνi, Γ
k
ji

be the coefficients of the connection ∇ on V Y with respect to the coordinates
(xν , yj), that is:

∇∂/∂xν (∂/∂yi) =
∑
k

Γkνi(∂/∂y
k), ∇∂/∂yj(∂/∂yi) =

∑
k

Γ
k

ji(∂/∂y
k)

From here, using these local expressions and imposing the conditions of our
statement in local coordinates, ΩLω is univocally determined by:

ΩLω =
∑
j,ν

∂L
∂yjν

ων ⊗ dyj, ων = i ∂
∂xν
ω (2.2)

therefore, in virtue of the uniqueness of these local expressions, we conclude. 2

The Cartan form associated to the Lagrangian density Lω is now defined as
the n-form on J1Y :

ΘLω = θ∧ΩLω + Lω (2.3)

where the exterior product ∧ is taken with respect to the bilinear product
defined by duality.

This differential form has the following important property:
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Proposition 2.4 There exists an unique V Y ∗
J1Y -valued (j1p)-horizontal n-

form FLω on J1Y such that:

dΘLω = θ∧ (FLω − dΩLω) (2.4)

where the exterior derivative in the second member is taken with respect to the
connection on J1Y induced by a linear connection ∇ on V Y with vanishing
vertical torsion (i.e. ∇D1D2 − ∇D2D1 − [D1, D2] = 0 for any pair D1, D2 of
p-vertical vector fields on Y ).

PROOF. In the local coordinate system from the proof of Proposition 2.3,

the condition of vanishing vertical torsion amounts to Γ
k

ij = Γ
k

ji. Taking this
into account, equation (2.4) in the statement locally allows us to univocally
determine FLω by the formula:

FLω =
∑
i

∂L
∂yi

−
∑
ν,j

(
Γjνi +

∑
k

ykνΓ
j

ki

)
∂L
∂yjν

ω ⊗ dyi

and again in virtue of uniqueness, we conclude. 2

The V Y ∗
J1Y -valued n-form ELω = FLω−dΩLω on J1Y is called Euler-Lagrange

form of the variational problem, which allows us to define the classical Euler-
Lagrange operator ELω : s ∈ Γ(X, Y ) 7→ ELω(s) ∈ Γ(X, s∗V Y ∗) by:

ELω(s)⊗ ω = (j1s)∗ELω

In a local coordinate system, this operator has the well-known form:

ELω(s) =
∑
i

(
∂L
∂yi

◦ j1s−
∑
ν

∂

∂xν

(
∂L
∂yiν

◦ j1s

))
dyi

Formula (2.4) is therefore a fundamental formula relating the three basic ob-
jects of the theory, that is: the structure form on the bundle of 1-jets, the
Euler-Lagrange operator, and the Cartan form. Together with (2.3), it consti-
tutes an intrinsic expression of the “Lepage congruences” from the classical
calculus of variations [30]. From them, the whole theory can now be developed
as follows:

Taking the Lie derivative of (2.3) with respect to any i.c.t. D ∈ X(1)(Y ) and
bearing in mind (2.4) we have:

Theorem 2.5 (First variation formula) There exists a V Y ∗
J1Y -valued (n−

1)-form ξ on J1Y (depending on D) such that:

LD(Lω) = θ(D) ◦ ELω + d (iDΘLω) + θ∧ξ, D ∈ X(1)(Y ) (2.5)
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We can now express the linear functional δsL defined by (2.1) with the formula:

(δsL)(D) =
∫
j1s
LD(Lω) =

∫
j1s
θ(D) ◦ ELω + d (iDΘLω) =

=
∫
X
ELω(s)(Dv

s )ω + d (iDΘLω) , D ∈ X(1)(Y ) (2.6)

where Dv
s is the vertical component along s of the projection Ds onto Y of

the vector field Dj1s along j1s.

Due to formula (2.6) and to the fact that the mapping D ∈ X(1)(Y ) 7→ Dv
s ∈

Γ(X, s∗V Y ) is surjective, we may redefine the linear form δsL on the “tangent
space” Γ(X, s∗V Y ) at s ∈ Γ(X, Y ) of the set of sections Γ(X,Y ) by the
following formula:

(δsL)(Dv
s ) =

∫
j1s
LD(Lω) =

∫
X
ELω(s)(Dv

s )ω + d (ΩLω(s)(D
v
s )) (2.7)

for Dv
s ∈ Γ(X, s∗V Y ), where D ∈ X(1)(Y ) is any i.c.t. extending Dv

s and
ΩLω(s) = (j1s)∗ΩLω.

In particular, for the sections with compact support Γc(X, s∗V Y ), one gets by
Stokes’ Theorem:

(δsL)(Dv
s ) =

∫
X
ELω(s)(Dv

s )ω, Dv
s ∈ Γc(X, s∗V Y )

therefore, by definition 2.2 of critical section, we obtain:

Corollary 2.6 (Euler-Lagrange equation) A section s ∈ Γ(X, Y ) is crit-
ical if and only if:

ELω(s) = 0

On the other hand, from (2.4) and the previous corollary follows:

Corollary 2.7 (Cartan equation) A section s ∈ Γ(X, Y ) is critical if and
only if for every vector field D on J1Y it holds:

(j1s)∗ (iDdΘLω) = 0

Following this guideline, Noether theory of infinitesimal symmetries of a vari-
ational problem can now be established as follows:

Definition 2.8 An infinitesimal symmetry of a variational problem with La-
grangian density Lω on J1Y is any vector field D ∈ X(Y ) such that Lj1D(Lω) =
0.

From formula (2.3) and (2.4), again, and from the second characterization of
critical sections (Corollary 2.7), follows:
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Theorem 2.9 (Noether) If D is an infinitesimal symmetry and s is a criti-
cal section of a variational problem with Lagrangian density Lω on J1Y , then:

d
[
(j1s)∗ij1DΘLω

]
= 0

The (n−1)-form ij1DΘLω on J1Y is called the Noether invariant corresponding
to the infinitesimal symmetry D.

If we denote by Sym(Lω) the real Lie algebra of infinitesimal symmetries of the
variational problem, this correspondence between infinitesimal symmetries and
their Noether invariants allows us to introduce the notion of multi-momentum
map as follows:

Definition 2.10 The multi-momentum map associated to the variational prob-
lem with Lagrangian density Lω on J1Y is the mapping µLω : Γ(X, Y ) →
Sym(Lω)∗ ⊗ Γ(X,Λn−1T ∗X) defined by the rule:

µLω(s)(D) = (j1s)∗ij1DΘLω, D ∈ Sym(Lω)

It is important to note that this formulation of first order variational calculus
has been generalized to higher order in [14,15,33]. A more recent review on
this approach can be found in [9, §2]. For other approaches to this topic, see
[12,24,37] and references therein.

3 First order constrained variational problems. First variation for-
mula. Euler-Lagrange equations.

Given a variational problem with Lagrangian density Lω on the 1-jet bun-
dle J1Y of a bundle p : Y → X, the additional data needed to define a first
order constrained variational problem is a submanifold S ⊂ J1Y such that
(j1p)(S) = X (the constraint). This kind of variational problems, first pro-
posed and studied by Lagrange for the case of one independent variable, can
be stated as follows:

Definition 3.1 A section s ∈ Γ(X,Y ) is said to be admissible if Imj1s ⊂ S.

This condition defines a system of first order partial differential equations for
the section s ∈ Γ(X, Y ), whose set of solutions ΓS(X, Y ) can be seen as some
kind of “manifold”, for which the following notion of “tangent space” can be
given:

Definition 3.2 Given an admissible section s ∈ ΓS(X, Y ), an admissible in-
finitesimal variation of s is a p-vertical vector field along s, Dv

s ∈ Γ(X, s∗V Y ),
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whose 1-jet extension j1Dv
s = j1Dv|j1s (Dv any p-vertical extension of Dv

s to

a neighborhood of s in Y ) is tangential to the submanifold S ⊂ J1Y along j1s.

This tangency condition defines a system of linear first order partial differ-
ential equations for the section Dv

s ∈ Γ(X, s∗V Y ) that can be seen as the
“linearization” of the equation Imj1s ⊂ S at the solution s ∈ ΓS(X,Y ). The
real vector space Ts(ΓS(X,Y )) defined by its solutions can be interpreted as
the “tangent space” to the “manifold” ΓS(X, Y ) at the point s ∈ ΓS(X, Y ).
In particular, we shall denote by T cs (ΓS(X, Y )) the subspace of sections in
Ts(ΓS(X, Y )) with compact support.

Remark Given s ∈ ΓS(X,Y ), if {st} (t ∈ (−ε, ε) ⊂ R, ε > 0) is a differ-
entiable 1-parametric deformation of s = s0 by sections of ΓS(X, Y ), it is

easy to see that the vector field ∂st

∂t

∣∣∣
t=0

belongs to Ts(ΓS(X, Y )), but the con-

verse doesn’t necessarily hold. A classical problem in the calculus of variations
with constraints is to determine the admissible sections for which such a result
holds, which are called regular solutions of the equation Imj1s ⊂ S (see [25] for
a recent treatment of this question for one independent variable). In any case,
the present trend, which we shall follow here, is to take Ts(ΓS(X, Y )) as the
space of admissible infinitesimal variations for the problem of Lagrange, which,
on the other hand, constitutes the basic principle of the so called “vakonomic
method” developed for mechanical systems with non-holonomic constraints
[2,5,21,34].

At this point, the Lagrangian density Lω defines on the set ΓS(X, Y ) of ad-
missible sections the functional:

L(s) =
∫
j1s
Lω, s ∈ ΓS(X, Y )

and the differential of L at any section s ∈ ΓS(X,Y ):

(δsL)(Dv
s ) =

∫
j1s
Lj1Dv

s
(Lω), Dv

s ∈ Ts(ΓS(X, Y ))

Definition 3.3 An admissible section s ∈ ΓS(X, Y ) is critical for the con-
strained variational problem with Lagrangian density Lω on J1Y and con-
straint submanifold S ⊂ J1Y when δsL = 0 on the space T cs (ΓS(X,Y )) of
admissible infinitesimal variations with compact support.

As for the case of unconstrained variational problems, a fundamental ques-
tion now is the characterization of critical sections as solutions of some kind
of partial differential equations. Under certain hypotheses on the constraint
submanifold, in this work we shall give such a characterization obtaining an
explicit Euler-Lagrange operator in an appropriate jet bundle. In addition,
the procedure we follow allows us to construct a Cartan form for this kind
of problems together with the subsequent generalization for this case of the

10



corresponding Cartan formalism.

To specify the class of constraint submanifolds that we shall consider in the
following, together with the first condition (j1p)(S) = X, we shall assume the
following:

Hypothesis (HY1) There exists a rank k vector bundle q : E → Y and a
bundle morphism:

J1Y
Φ //

π
!!DD

DD
DD

DD
E

q
����

��
��

��

Y

such that S = Φ−1(0E) (where 0E is the zero section of E) and the restriction
of dΦ to the fibers of π : J1Y → Y has rank k along S.

In particular, if Φ is affine with respect to the corresponding affine structures
of J1Y and E on Y , we say that the constraint is affine.

Locally, if U ⊂ Y is an (xµ, yj)-coordinated open subset where E is trivial
(EU = U ×Rk), then Φ is defined by k functions φ1, . . . , φk ∈ C∞((J1Y )U), so
that:

S ∩ (J1Y )U = {j1
xs ∈ (J1Y )U / φ

1(j1
xs) = 0, . . . , φk(j1

xs) = 0}

and (∂φα/∂yiν) has constant rank, k, along S ∩ (J1Y )U .

In particular, for affine constraints we have: φα = aα +
∑
i,ν b

να
i y

i
ν , where

aα, b
να
i ∈ C∞(YU).

This morphism Φ can be seen as a section in Γ(J1Y,EJ1Y ) (EJ1Y the bundle
over J1Y induced from E by the projection π), in which case the constraint
submanifold is simply the zero set of this section, i.e.: S = {j1

xs / Φ(j1
xs) =

0} ⊂ J1Y .

Locally, if eα (α = 1, . . . , k) is a local basis for the module of sections Γ(U, E|U)
induced by the previous trivialization EU = U × Rk, then Φ|U =

∑
α φ

αeα.

From this point the following characterization of Ts(ΓS(X, Y )), the “tangent
space” of ΓS(X, Y ) at s ∈ ΓS(X, Y ), is straightforward:

Proposition 3.4 Dv
s ∈ Ts(ΓS(X, Y )) if and only if (j1Dv

s )Φ = 0, where the
derivative of the section Φ is taken with respect to any linear connection on
EJ1Y .
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PROOF. From the local expression Φ =
∑
α φ

αeα follows, by covariant deriva-
tive with respect to j1Dv

s :

(j1Dv
s )Φ =

k∑
α=1

((j1Dv
s )φ

α)eα(j
1s) + φα(j1s)((j1Dv

s )eα)

And now, as s is admissible, φα(j1s) = 0, and whichever the sections (j1Dv
s )eα

might be, we conclude that (j1Dv
s )Φ = 0 if and only if (j1Dv

s )φ
α = 0, which is,

precisely, the condition on j1Dv
s to be tangential to the submanifold S along

j1s. 2

To express now a second hypothesis that we shall impose on the constraint
submanifold S ⊂ J1Y , we shall first generalize the formalism developed in §2
taking as Lagrangian density the EJ1Y -valued n-form Φω.

The two fundamental Propositions 2.3 and 2.4 can be generalized without
essential modifications:

Proposition 3.5 (Constraint’s Momentum form) There exists a unique
(V Y ∗ ⊗ E)J1Y -valued (n − 1)-form ΩΦω on J1Y such that ΩΦω = iFω, where
F is any (V Y ∗ ⊗ E)J1Y -valued vector field on J1Y , solution of the equation:

iFdθ = dΦ

over the π-vertical vector fields of J1Y , where the exterior derivative is taken
with respect to the induced connections on J1Y of two linear connections ∇
on V Y and ∇E on E and the bilinear products are the obvious ones. The
(n−1)-form ΩΦω does not depend on the choice of the connections ∇ and ∇E.

PROOF. Let eα (α = 1, . . . , k) be a local basis of the module of sections
Γ(Y,E) on a neighborhood coordinated by (xν , yj, ykν ), where Φ =

∑
α φ

αeα,

and let Γkνi, Γ
k

ji be the coefficients of the connection ∇ on V Y and γανβ, γ
α
jβ

the coefficients of the connection ∇E on E, i.e.:

∇∂/∂xν (∂/∂yi) = Γkνi(∂/∂y
k), ∇∂/∂yj(∂/∂yi) = Γ

k
ji(∂/∂y

k)

(∇E)∂/∂xν (eβ) = γανβeα, (∇E)∂/∂yj (eβ) = γαjβeα

where Einstein convention on repeated indexes is used here and from now on.

Using these expressions, imposing the conditions of our statement in local
coordinates, the local expression of ΩΦω is univocally determined:

ΩΦω =
∂φα

∂yiν
ων ⊗ dyi ⊗ eα, ων = i ∂

∂xν
ω (3.1)

12



therefore, in virtue of the uniqueness, we conclude. 2

As for the ordinary case, we may now define an EJ1Y -valued Cartan n-form
associated to the constraint by the rule:

ΘΦω = θ∧ΩΦω + Φω (3.2)

with the following analogous property:

Proposition 3.6 There exists an unique (V Y ∗⊗E)J1Y -valued (j1p)-horizon-
tal n-form FΦω on J1Y such that:

dΘΦω = θ∧ (FΦω − dΩΦω) (3.3)

where the exterior derivatives are taken with respect to the connections on J1Y
induced by a linear connection ∇ on V Y with vanishing vertical torsion and
a linear connection ∇E on E.

PROOF. In the local coordinate system from the proof of Proposition 3.5,
equation (3.3) from the statement locally allows us to univocally determine
FΦω by the formula:

FΦω =

[
∂φα

∂yi
+ γαiβφ

β −
(
Γjνi + Γ

j
kiy

k
ν

) ∂φα
∂yjν

]
ω ⊗ dyi ⊗ eα

therefore, in virtue of the uniqueness of this local expression, we conclude. 2

We shall call the (V Y ∗⊗E)J1Y -valued n-form EΦω = FΦω−dΩΦω on J1Y the
Euler-Lagrange form associated to the constraint, which allows us to define
the corresponding Euler-Lagrange operator EΦω : s ∈ Γ(X, Y ) 7→ EΦω(s) ∈
Γ(X, s∗(V Y ∗ ⊗ E)), by the rule:

EΦω(s)⊗ ω = (j1s)∗EΦω

Locally:

EΦω(s) =

[
∂φα

∂yi
◦ j1s− ∂

∂xν

(
∂φα

∂yiν
◦ j1s

)
+

+

(
γαiβφ

β − (γανβ + ykνγ
α
kβ)

∂φβ

∂yiν

)
◦ j1s

]
dyi ⊗ eα

(3.4)

From this point, variation formulas (2.5), (2.6) and (2.7) from §2 can be gen-
eralized without any change to the EJ1Y -valued n-form Φω. In particular, one
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gets:

Lj1Dv
s
(Φω) = EΦω(s)(D

v
s )⊗ ω + d (ΩΦω(s)(D

v
s )) , Dv

s ∈ Γ(X, s∗V Y ) (3.5)

which shall play an essential role in the determination of the tangent space
Ts(ΓS(X, Y )) at s ∈ ΓS(X, Y ) of the space ΓS(X,Y ). This is what we consider
next.

The Euler-Lagrange operator EΦω defines a section of the induced bundle
(V Y ∗ ⊗ E)J2Y , while the momentum (n − 1)-form ΩΦω induces by pull-back
a (V Y ∗ ⊗ E)J2Y -valued (n− 1)-form on J2Y . In these conditions, the second
hypothesis we shall impose on the constraint submanifold S = {j1

xs /Φ(j1
xs) =

0} ⊂ J1Y is the following:

Hypothesis (HY2) On an open subset of J1Y , dense in S, there exists a
section N ∈ Γ(J2Y, (E∗ ⊗ V Y )J2Y ) solution of the system of equations:

ΩΦω ◦N = 0, EΦω ◦N = I (3.6)

where ◦ stands for the bilinear product (V Y ∗ ⊗ E)J2Y × (E∗ ⊗ V Y )J2Y →
(End(E))J2Y defined by the composition of morphisms, and I is the identity
endomorphism in Γ(J2Y, (End(E))J2Y ).

In local coordinates, if N = N i
αe
∗α ⊗ (∂/∂yi) (where N i

α ∈ C∞(J2Y ) and e∗α

is the dual basis of a basis eα of Γ(J2Y,EJ2Y )), following (3.1) and (3.4), the
system (3.6) may be expressed as:

m∑
j=1

∂φα

∂yjν
N j
β = 0,

m∑
j=1

[
∂φα

∂yj
+
∑
γ

γαjγφ
γ −

∑
ν

∂

∂xν

(
∂φα

∂yjν

)]
N j
β = δαβ (3.7)

(for 1 ≤ α, β ≤ k and 1 ≤ ν ≤ n), which is a system of k2(n + 1) linear
equations with km unknowns that, in particular, for k ≤ m

n+1
and maximal

rank for the matrix of the system, is compatible.

Remarks

1.- Whereas the first Hypothesis (HY1) is the usual one in the setting of the
problem of Lagrange, it is not so for the second one (HY2), which is new and
is justified, among other reasons, by the following Theorem 3.7, where the tan-
gent space Ts(ΓS(X,Y )) is characterized as the image of a linear differential
operator on the space of sections Γ(X, s∗V Y ). Though this condition intro-
duces an additional restriction on the constraint submanifolds, it still leaves a
wide margin for the application of this approach, as we shall see in §6 of this
work.

2.- As can be seen, the second group of equations (3.7) depends on the choice of
the connection ∇E on q : E → Y , due to the term

∑
γ γ

α
jγφ

γ. This dependence
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disappears both when the equations are considered along the submanifold S
(where φα = 0) and when E and ∇E are obtained by pull-back to Y of a vector
bundle on X and a connection on this bundle. In the different applications
this is the usual case, so we will be in situation to eliminate this term.

The first important consequence of our hypothesis is, as we just mentioned,
the following characterization of the tangent space Ts(ΓS(X, Y )):

Theorem 3.7 For any admissible section s ∈ ΓS(X, Y ), the first order dif-
ferential operator Ps : Γ(X, s∗V Y ) → Γ(X, s∗V Y ) defined by the rule:

Ps(D
v
s ) = Dv

s −Ns ◦ (j1Dv
s )Φ, Dv

s ∈ Γ(X, s∗V Y ) (3.8)

where Ns ∈ Γ(X, s∗(E∗⊗V Y )) is the value along j2s of a solution N of the sys-
tem (3.6), is a projector from Γ(X, s∗V Y ) onto the real subspace Ts(ΓS(X, Y ))
of admissible infinitesimal variations at s, whose kernel is the C∞(X)-sub-
module of Γ(X, s∗V Y ) defined by the sections of the form Ns(e), e ∈ Γ(X, s∗E).

The first order differential operator P+
s : Γ(X, s∗V Y ∗) → Γ(X, s∗V Y ∗) given

by the rule:

P+
s Es⊗ω = Es⊗ω+λEs◦EΦω(s)⊗ω−dλEs∧ΩΦω(s), Es ∈ Γ(X, s∗V Y ∗) (3.9)

where λEs = −Es ◦Ns, satisfies the commutation rule:

Es(Ps(Dv
s ))ω = (P+

s Es)(Dv
s )ω + d (λEs ◦ ΩΦω(s)(D

v
s )) , Dv

s ∈ Γ(X, s∗V Y )
(3.10)

PROOF. By Proposition 3.4, Ps is the identity on Ts(ΓS(X, Y )), therefore
Ts(ΓS(X, Y )) ⊆ ImPs.

Conversely, given an element Ps(D
v
s ) from ImPs, following formula (3.5) we

get:

Lj1(Ps(Dv
s ))(Φω) = EΦω(s)(Ps(D

v
s ))⊗ ω + d (ΩΦω(s)(Ps(D

v
s ))) =

= EΦω(s)
(
Dv
s −Ns ◦ (j1Dv

s )Φ
)
⊗ ω + d

(
ΩΦω(s)

(
Dv
s −Ns ◦ (j1Dv

s )Φ
))

=

= EΦω(s)(D
v
s )⊗ ω − EΦω(s)(Ns ◦ (j1Dv

s )Φ)⊗ ω+

+ d
[
ΩΦω(s)(D

v
s )− ΩΦω(s)(Ns ◦ (j1Dv

s )Φ)
]

now, due to the associativity of the bilinear products under consideration for
the second and fourth terms of this expression, and due to the equations (3.6)
satisfied by N , it holds:

EΦω(s)(Ns ◦ (j1Dv
s )Φ) = (EΦω(s) ◦Ns)

(
(j1Dv

s )Φ
)

= (j1Dv
s )Φ

ΩΦω(s)(Ns ◦ (j1Dv
s )Φ) = (ΩΦω(s) ◦Ns)

(
(j1Dv

s )Φ
)

= 0
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Therefore:

Lj1(Ps(Dv
s ))(Φω) = EΦω(s)(D

v
s )⊗ ω − (j1Dv

s )Φ⊗ ω + d (ΩΦω(s)(D
v
s ))

Taking now into account that j1Dv
s and j1(Ps(D

v
s )) are j1p-vertical, the pre-

vious result may be expressed as:(
j1(Ps(D

v
s ))Φ

)
⊗ ω = EΦω(s)(D

v
s )⊗ ω − Lj1Dv

s
(Φω) + d (ΩΦω(s)(D

v
s ))

and finally, applying formula (3.5) again, yields j1(Ps(D
v
s ))Φ = 0, which by

Proposition 3.4 means that Ps(D
v
s ) ∈ Ts(ΓS(X, Y )).

Furthermore, if Dv
s is in the kernel of Ps, then Dv

s = Ns ◦ (j1Dv
s )Φ and thus

has the form Ns(e), e ∈ Γ(X, s∗E). Conversely, if we have a vector field of the
form Dv

s = Ns(e), then:

Ps(Ns(e))⊗ ω = Ns(e)⊗ ω −Ns ◦ (j1(Ns(e))Φ)⊗ ω =

= Ns(e)⊗ ω −Ns ◦ Lj1(Ns(e))(Φω) =

= Ns(e)⊗ ω −Ns ◦ [EΦω(s)(Ns(e))⊗ ω + d (ΩΦω(s)(Ns(e)))]

If we apply again (3.6) we get that ΩΦω(s)(Ns(e)) = 0 and EΦω(s)(Ns(e)) = e,
therefore:

Ps(Ns(e)) = 0

Finally, to prove the last part of the statement, if we follow formula (3.5) and
the definition (3.8) of Ps:

Es(Ps(Dv
s ))ω =

[
Es(Dv

s )− Es(Ns ◦ (j1Dv
s )Φ)

]
ω =

= Es(Dv
s )ω − (Es ◦Ns) ◦ Lj1Dv

s
(Φω) =

= Es(Dv
s )ω + λEs [EΦω(s)(D

v
s )⊗ ω + d (ΩΦω(s)(D

v
s ))] =

= Es(Dv
s )ω + λEs ◦ EΦω(s)(D

v
s )⊗ ω − dλEs∧ΩΦω(s)(D

v
s )+

+ d (λEs ◦ ΩΦω(s)(D
v
s )) = (P+

s Es)(Dv
s )ω + d (λEs ◦ ΩΦω(s)(D

v
s ))

thus proving the theorem. 2

Remarks

1.- An important fact to be emphasized about formula:

Ts(ΓS(X,Y )) = Ps(Γ(X, s∗V Y ))

is that, from the knowledge of a solution of the system of linear equations
(3.6) (easy to compute if compatible), one can obtain the general solution of
the system of partial differential equations (j1Dv

s )Φ = 0 for Dv
s ∈ Γ(X, s∗V Y )

(which defines Ts(ΓS(X, Y ))) as the image of Γ(X, s∗V Y ) by a certain differen-
tial operator. Regardless of its generality (this holds for arbitrary dimX), this
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construction differs notably from the usual parameterizations (for dimX = 1)
of Ts(ΓS(X, Y )), which are based on a suitable integration of (j1Dv

s )Φ = 0
with initial conditions.

2.- Taking compact-supported sections, there easily follows:

T cs (ΓS(X, Y )) = Ps(Γ
c(X, s∗V Y ))

and integrating (3.10) over X:∫
X
Es(Ps(Dv

s ))ω =
∫
X

(P+
s Es)(Dv

s )ω

for any Dv
s ∈ Γc(X, s∗V Y ), Es ∈ Γ(X, s∗V Y ∗). Thus, P+

s coincides with the
formal adjoint of the operator Ps.

Coming back to the general formalism, we now obtain the following funda-
mental result:

Theorem 3.8 (Constrained first variation formula) For any admissible
section s ∈ ΓS(X, Y ) and admissible variation Dv

s ∈ Ts(ΓS(X, Y )), it holds:

(δsL)(Dv
s ) =

∫
X

(P+
s ELω(s))(D

v

s)ω + d
[
ΩLω(s)(D

v
s ) + λELω(s) ◦ ΩΦω(s)(D

v

s)
]

where D
v

s ∈ Γ(X, s∗V Y ) is any section such that Ps(D
v

s) = Dv
s .

In particular:

(δsL)(Dv
s ) =

∫
X

(P+
s ELω(s))(D

v
s)ω, Dv

s ∈ T cs (ΓS(X,Y ))

where D
v

s ∈ Γc(X, s∗V Y ) is any section with compact support satisfying Dv
s =

Ps(D
v

s).

PROOF. The first formula is obtained by application of (2.7) to Dv
s =

Ps(D
v
s), taking into account (3.10), and the second one is then obtained taking

compact-supported fields. 2

The arbitrariness of D
v

s ∈ Γc(X, s∗V Y ) in the previous formula finally yields
the following characterization of critical sections:

Corollary 3.9 (Euler-Lagrange equations) A section s ∈ ΓS(X, Y ) is
critical for the constrained variational problem with Lagrangian density Lω
on J1Y and constraint submanifold S = {j1

xs /Φ(j1
xs) = 0} ⊂ J1Y satisfying

Hypotheses (HY1) and (HY2) if and only if:

P+
s (ELω(s))⊗ω = ELω(s)⊗ω+λELω(s)◦EΦω(s)⊗ω−dλELω(s)∧ΩΦω(s) = 0 (3.11)
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where ELω is the Euler-Lagrange operator of Lω as an unconstrained varia-
tional problem, and λELω(s) = −ELω(s) ◦Ns.

A remarkable fact about this characterization is that we have an explicit third
order differential operator: s ∈ Γ(X, Y ) 7→ Ẽ(s) = P+

s (ELω(s)) ∈ Γ(X, s∗V Y ∗)
(Euler-Lagrange operator) that, together with the constraints, provide us the
set of critical sections of the constrained variational problem under consider-
ation:

Φ(s) = 0, Ẽ(s) = 0

Moreover, there exists a V Y ∗
J2Y -valued n-form on J2Y which we shall call

Euler-Lagrange form:

Ẽ = ELω + λELω
◦ EΦω − dλELω

∧ΩΦω, λELω
= −ELω ◦N (3.12)

such that, for any section s ∈ ΓS(X, Y ), it holds:

Ẽ(s)⊗ ω = (j2s)∗Ẽ (3.13)

We must emphasize that such a characterization has been possible due to the
consideration of the “universal multiplier”:

λELω
= −ELω ◦N ∈ Γ(J2Y,E∗

J2Y ) (3.14)

obtained from a solution N of the system of the system of linear equations
(3.6) and from the Euler-Lagrange operator ELω associated to Lω as an un-
constrained variational problem.

Remarks

1.- Equation (3.11) proves that, for any critical section s ∈ ΓS(X, Y ), there
exists a section λ(s) = −ELω(s) ◦Ns ∈ Γ(X, s∗E∗) such that:

ELω(s)⊗ ω + λ(s) ◦ EΦω(s)⊗ ω − dλ(s)∧ΩΦω(s) = 0 (3.15)

This section λ(s) is unique, indeed if λ′(s) also satisfies (3.15), the difference
η(s) = λ′(s)− λ(s) would satisfy the equation:

η(s) ◦ EΦω(s)⊗ ω − dη(s)∧ΩΦω(s) = 0 (3.16)

and, composing with Ns and taking into account Hypothesis (HY2) (equations
(3.6)), we get 0 = η(s) ◦ EΦω(s) ◦Ns⊗ω−dη(s)∧ΩΦω(s) ◦Ns = η(s)⊗ω, that
is, η(s) = 0 and λ′(s) = λ(s).

In particular, if N ′ is another solution to (3.6), that is, N ′ = N + N̂ with
ΩΦω ◦ N̂ = 0, EΦω ◦ N̂ = 0, then for any critical section s ∈ ΓS(X, Y ), it
holds ELω(s) ◦ N ′

s = −λ′(s) = −λ(s) = ELω(s) ◦ Ns, and therefore we get
ELω(s) ◦ N̂s = 0 for any solution N̂ of the system ΩΦω ◦ N̂ = 0, EΦω ◦ N̂ = 0
and critical section s ∈ ΓS(X, Y ).

18



For problems in one independent variable (X = R), we must note that the
fact that formula (3.16) has only the trivial solution η(s) = 0 is a sufficient
condition for the section s ∈ ΓS(X, Y ) to be regular (see [23] or more recently
[25, Theorem 6]), which suggests the consideration of that equation as a suit-
able instrument to explore the conditions for s ∈ ΓS(X,Y ) to be a regular
solution of Imj1s ⊂ S in the general case.

2.- Taking the corresponding variation formulas (§2 from [9]), Theorem 3.8,
Corollary 3.9 and all the subsequent considerations also hold for r-order La-
grangian densities Lω, by only substituting ELω, ΩLω and ELω by the corre-
sponding objects of higher order variational calculus.

4 Cartan form. Cartan equation. Noether Theorem

The multiplier (3.14) allows us to establish a Cartan formalism for this class
of constrained variational problems, proceeding as follows:

Definition 4.1 We shall call Cartan form of the constrained variational prob-
lem the ordinary n-form Θ̃ on J2Y given by:

Θ̃ = ΘLω + λELω
◦ΘΦω (4.1)

where ΘLω and ΘΦω are respectively the pull-back to J2Y of the Cartan forms
(2.3) and (3.2), λELω

∈ Γ(J2Y,E∗
J2Y ) is the section defined by formula (3.14)

and ◦ is the duality bilinear product between the vector bundles EJ2Y and E∗
J2Y .

Analogous to formula (2.4) of unconstrained variational calculus, we obtain
the following:

Proposition 4.2
dΘ̃ = θ∧Ẽ + dλELω

∧Φω (4.2)

where Ẽ is the Euler-Lagrange form (3.12) of the constrained variational prob-
lem.

PROOF. It is enough to compute dΘ̃ using the differential calculus from
§§2,3 and to apply formulas (2.4), (3.3) and (3.12). 2

Definition 4.1 of Cartan form is justified by the following fundamental result:

Theorem 4.3 (Cartan equation) An admissible section s ∈ ΓS(X, Y ) is
critical for the constrained variational problem if and only if:

(j2s)∗
(
iDdΘ̃

)
= 0, ∀D ∈ X(J2Y ) (4.3)
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equivalently: if and only (4.3) holds for any vector field D ∈ X(S(2)), where
S(2) ⊂ J2Y is the inverse image of the constraint submanifold S ⊂ J1Y by the
canonical projection j1π : J2Y → J1Y .

PROOF. Given s ∈ ΓS(X, Y ) and D ∈ X(J2Y ), by Proposition 4.2, taking
into account that (j1s)∗θ = 0, (j1s)∗Φ = 0, and formula (3.13), we get:

(j2s)∗
(
iDdΘ̃

)
= (j2s)∗

(
θ(D) ◦ Ẽ

)
= Ẽ(s)(Dv

s )ω

where Dv
s ∈ Γ(X, s∗V Y ) is the p-vertical component along s of the projection

on Y of the vector field Dj2s along j2s defined by D.

Taking now into account that the mapping D ∈ X(J2Y ) 7→ Dv
s ∈ Γ(X, s∗V Y )

is surjective, then s is critical (i.e. Ẽ(s) = 0) if and only if (j2s)∗
(
iDdΘ̃

)
= 0

for any vector field D ∈ X(J2Y ).

Only remains to prove that from the (weaker) condition (j2s)∗(iDdΘ̃) = 0 for
any vector field D ∈ X(S(2)) also follows that s is critical. Indeed, under this
hypothesis and taking into account that the mapping D ∈ X(S(2)) 7→ Dv

s ∈
Ts(ΓS(X, Y )) is surjective, the previous formula (j2s)∗

(
iDdΘ̃

)
= Ẽ(s)(Dv

s )ω

together with Theorem 3.7 allow us to state that Ẽ(s)(Ps(D
v
s )) = 0 for any

Dv
s ∈ Γ(X, s∗V Y ). From this, due to commutation formula (3.10) and being

P+
s a projector (so P+

s Ẽ(s) = P+
s P

+
s ELω(s) = P+

s ELω(s) = Ẽ(s)), we obtain:

0 = Ẽ(s)(Ps(D
v
s ))ω = Ẽ(s)(Dv

s )ω + d
(
λẼ(s)

◦ ΩΦω(s)(D
v
s )
)

Taking now, in particular, sections Dv
s with compact support, and integrating

along X, we obtain:∫
X
Ẽ(s)(Dv

s )ω = 0, Dv
s ∈ Γc(X, s∗V Y )

and hence Ẽ(s) = 0, i.e., s is critical. 2

In this framework, all the typical questions from unconstrained variational
calculus can be developed in a similar way. In particular, the notion of in-
finitesimal symmetry and Noether Theorem can be established as follows:

Definition 4.4 An infinitesimal symmetry of the constrained variational prob-
lem is a vector field D ∈ X(Y ) such that:

Lj1D(Lω) = 0 , j1D is tangential to S
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Theorem 4.5 (Noether) If s ∈ ΓS(X, Y ) is a critical section and D is an
infinitesimal symmetry of the constrained variational problem, then:

d
[
(j2s)∗ij2DΘ̃

]
= 0

PROOF. From Lj1D(Lω) = 0 follows:

(j1s)∗Lj1DΘLω = (j1s)∗Lj1D (θ∧ΩLω + Lω) = (j1s)∗ (θ∧η + Lj1DLω) = 0

On the other hand, as j1D is tangential to S, (j1D)Φ = 0 holds along S,
which, together with the annihilation of Φ along S, yields:

(j1s)∗ΘΦω = (j1s)∗ (θ∧ΩΦω + Φω) = 0

(j1s)∗Lj1DΘΦω = (j1s)∗Lj1D (θ∧Ωφω + Φω) =

= (j1s)∗
(
θ∧η′ + (j1D)Φω + ΦLj1Dω

)
= 0

From the previous three equations follows:

(j2s)∗Lj2DΘ̃ = (j2s)∗Lj2D (ΘLω + λELω
◦ΘΦω) = (j1s)∗Lj1DΘLω+

+ (j2s)∗
(
(j2D)λELω

◦ΘΦω

)
+ (j2s)∗ (λELω

◦ Lj1DΘΦω) = 0

Now, as s is critical, Cartan equation yields (j2s)∗
[
ij2DdΘ̃

]
= 0, therefore:

d
[
(j2s)∗ij2DΘ̃

]
= (j2s)∗dij2DΘ̃ = (j2s)∗Lj2DΘ̃ = 0

as we wanted. 2

If we denote by SymS(Lω) the real Lie algebra of infinitesimal symmetries
of the constrained variational problem, we can now introduce the concept of
multi-momentum map for this kind of problems as follows:

Definition 4.6 The multi-momentum map associated to the constrained vari-
ational problem (Lω, S ⊂ J1Y ) is the mapping µ̃Lω : ΓS(X, Y ) → SymS(Lω)∗⊗
Γ(X,Λn−1T ∗X) defined by the rule:

µ̃Lω(s)(D) = (j2s)∗ij2DΘ̃ = (j1s)∗ij1DΘLω + λELω(s) ◦ (j1s)∗ij1DΘΦω

for any D ∈ SymS(Lω).
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5 Projectability of the Cartan form. Relation with the Lagrange
multiplier rule. Regularity.

The multiplier λELω
= −ELω ◦N ∈ Γ(J2Y,E∗

J2Y ) allows us to define a bundle
morphism:

J2Y
ϕ //

!!CC
CC

CC
CC

J1Y ×Y E
∗

yysssssssssss

Y

(5.1)

by the rule:

ϕ(j2
xs) =

(
j1
xs, λELω

(j2
xs)
)

Via this morphism the Cartan form Θ̃ of the constrained variational problem
is projected to the n-form on J1Y ×Y E

∗:

Θ̂ = ΘLω + λ ◦ΘΦω (5.2)

where λ ∈ Γ(J1Y ×Y E
∗, E∗

J1Y×Y E∗) is the tautological section λ(j1
xs, e

∗
s(x)) =

e∗s(x) and ◦ is the bilinear duality product. That is, it holds:

Θ̃ = ϕ∗Θ̂ (5.3)

In these conditions, critical sections of the constrained variational problem
admit the following new characterization:

Theorem 5.1 A section s ∈ ΓS(X, Y ) is critical for the constrained vari-
ational problem if and only if the section ŝ = ϕ ◦ j2s = (j1s, λELω

(j2s)) ∈
Γ(X,S ×Y E

∗) satisfies Cartan equation:

ŝ∗
(
i
D̂
dΘ̂
)

= 0, ∀D̂ ∈ X(J1Y ×Y E
∗) (5.4)

or equivalently, if and only if (5.4) holds for any vector field D̂ ∈ X(S×Y E
∗).

PROOF. Let s ∈ Γ(X, Y ) be an admissible critical section for the con-
strained variational problem, and ŝ = ϕ ◦ j2s = (j1s, λELω

(j2s)) ∈ Γ(X,S ×Y

E∗). As the canonical projection J2Y → J1Y is regular and coincides with
the composition of ϕ with the canonical projection J1Y ×Y E

∗ → J1Y , we get
the decomposition of the space Xŝ(J

1Y ×Y E
∗) of vector fields on J1Y ×Y E

∗

along ŝ:

Xŝ(J
1Y ×Y E

∗) = ϕ∗
(
Xj2s(J

2Y )
)

+ Xŝ(E
∗)

where Xŝ(E
∗) is the space of vector fields along ŝ whose projection to J1Y

vanishes.
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Following (5.3) and Cartan equation (4.3), for any vector fieldDj2s ∈ Xj2s(J
2Y ),

it holds:

(ŝ)∗iϕ∗Dj2s
dΘ̂ = (j2s)∗ ◦ ϕ∗

(
iϕ∗Dj2s

dΘ̂
)

= (j2s)∗
(
iDj2s

dΘ̃
)

= 0

On the other hand, for any vector field DE∗ ∈ Xŝ(E
∗), as s is admissible,

following (5.2) we have:

ŝ∗
(
iDE∗dΘ̂

)
= ŝ∗iDE∗ (dΘLω + dλ∧ΘΦω + λ ◦ dΘΦω) =

= ŝ∗(iDE∗dλ) ◦ Φ(j1s)⊗ ω = 0

Hence, for any vector field D̂ = ϕ∗Dj2s +DE∗ along ŝ, it holds:

ŝ∗
(
i
D̂
dΘ̂
)

= ŝ∗iϕ∗Dj2s
dΘ̂ + ŝ∗iDE∗dΘ̂ = 0

which proves our statement in one direction for both cases.

Conversely, let s ∈ ΓS(X, Y ) satisfy (5.4). Applying now Propositions 2.4 and
3.6, dΘ̂ can also be computed in the following way:

dΘ̂ = θ∧ (ELω + λ ◦ EΦω − dλ∧ΩΦω) + dλ∧Φω (5.5)

so now, as s is admissible, we have Φ(j1s) = 0 and taking in equation (5.4)
an arbitrary vector field D̂ ∈ X(J1Y ×Y E

∗):

0 =ŝ∗
(
i
D̂
dΘ̂
)

= ŝ∗
(
θ(D̂) ◦ (ELω + λEΦω − dλ∧ΩΦω)

)
=

=
(
ELω(s)⊗ ω + λELω(s) ◦ EΦω(s)⊗ ω − dλELω(s)∧ΩΦω(s)

)
(Dv

s ) =

= Ẽ(s)(Dv
s )⊗ ω

where Dv
s ∈ Γ(X, s∗V Y ) is the vertical component along s of the projection

Ds on Y of the vector field D̂ŝ along ŝ.

From this point, due to the arbitrariness of Dv
s , Ẽ(s) = 0 and therefore, fol-

lowing Corollary 3.9, the section s ∈ ΓS(X, Y ) is critical.

There only remains to prove that the (weaker) condition ŝ∗
(
i
D̂
dΘ̂
)

= 0 for any

D̂ ∈ X(S×Y E
∗) also implies that s is critical. In fact, from the previous com-

putations and Theorem 3.7, under this condition we obtain Ẽ(s)(Ps(D
v
s )) = 0

for any Dv
s ∈ Γ(X, s∗V Y ) and proceeding in the same way as for the sec-

ond part of the proof of Theorem 4.3 we conclude that Ẽ(s) = 0, that is,
s ∈ ΓS(X,Y ) is critical. 2
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Remark It is important to note that it holds a corresponding projection of
Noether Theorem. Indeed, for any vector field D ∈ X(Y ), it holds:

ij2DΘ̃ = ij2D (ΘLω + λELω
◦ΘΦω) = ij1DΘLω + (ϕ∗λ) ◦ ij1DΘΦω =

= ϕ∗ (ij1DΘLω + λ ◦ ij1DΘΦω) = ϕ∗ij1DΘ̂

and therefore for any section ŝ = ϕ ◦ j2s, s ∈ Γ(X,Y ):

ŝ∗ij1DΘ̂ = (j2s)∗ ◦ ϕ∗ij1DΘ̂ = (j2s)∗ij2DΘ̃

In particular, ifD ∈ SymS(Lω) and s ∈ ΓS(X, Y ) is critical for the constrained
variational problem, following Theorem 4.5:

0 = d
(
(j2s)∗ij2DΘ̃

)
= d

(
ŝ∗ij1DΘ̂

)
(5.6)

which is the projected Noether Theorem we wanted to prove.

The relation of these results with the “Lagrange multiplier rule” is straight-
forward:

Let us consider the unconstrained variational problem with Lagrangian density
(L+ λ ◦Φ)ω on J1(Y ×Y E

∗), where we write Y ×Y E
∗ instead of E∗ to keep

in mind the two components involved, and where we still denote by λ the
pull-back of the tautological section by the bundle morphism:

J1(Y ×Y E
∗)

ψ //

&&LLLLLLLLLLL J1Y ×Y E
∗

yysssssssssss

Y

(5.7)

Simple computations allow us to prove that the Euler-Lagrange equations
satisfied by critical sections (s, λ) ∈ Γ(X, Y ×Y E

∗) of this variational problem
are:

Φ(j1s) = 0, ELω(s)⊗ ω + λ ◦ EΦω(s)⊗ ω − dλ∧ΩΦω(s) = 0 (5.8)

Thus, if s ∈ ΓS(X, Y ) is a critical section of the constrained variational prob-
lem, i.e. Ẽ(s) = 0, the section (s, λELω

(j2s)) ∈ Γ(X, Y×YE
∗) satisfies equations

(5.8), and conversely, if (s, λ) ∈ Γ(X, Y ×Y E
∗) satisfies these equations, by

composition of the second equation in (5.8) with Ns and taking into account
(3.6) we obtain λ = λELω(s), therefore s ∈ ΓS(X,Y ) and Ẽ(s) = 0, that is, s is
a critical section for the constrained variational problem.

The mapping Π: (s, λ) ∈ Γ(X, Y ×Y E∗) 7→ s ∈ Γ(X,Y ) defines then a
canonical bijection:

Π: Γcrit(X, Y ×Y E
∗)−̃→Γcrit(X, Y ) (5.9)
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between the set of critical sections of the unconstrained variational problem
(L + λ ◦ Φ)ω and the set of critical sections of the constrained variational
problem (Lω, S ⊂ J1Y ), which constitutes the expression in this formalism of
the Lagrange multiplier rule.

Remark The standard way to prove that any critical section (s, λ) ∈ Γ(X, Y×Y

E∗) of the unconstrained variational problem (L+ λ ◦ Φ)ω is also critical for
the constrained variational problem (Lω, S ⊂ J1Y ) is, as is well known, the
following: from the first equation in (5.8), s ∈ ΓS(X, Y ), and taking arbi-
trary vector fields D ∈ X(s,λ)(Y ×Y E

∗) along (s, λ) whose projection to Y is
Dv
s ∈ T cs (ΓS(X, Y )), i.e. such that (j1Dv

s )Φ = 0, one gets:

0 =
∫
j1(s,λ)

Lj1D(L+ λ ◦ Φ)ω =
∫
j1s
Lj1Dv

s
Lω

therefore s ∈ ΓS(X,Y ) is critical for the constrained variational problem.

However, this only proves that the mapping (5.9) is well defined, but it need
not be injective nor surjective. It is precisely to obtain the latter that one needs
to impose additional conditions. In particular, our Hypothesis (HY2) allows
us to prove the fundamental bijection (5.9) and, which is more attractive, in
a purely differential-geometric way.

Regarding the relation between the Cartan forms involved in both formalisms,
one gets the following result:

Proposition 5.2 The Cartan form Θ(L+λ◦Φ)ω of the Lagrangian density (L+

λ ◦ Φ)ω projects via the bundle morphism ψ to the form Θ̂. That is:

Θ(L+λ◦Φ)ω = ψ∗Θ̂

PROOF. Taking the differential of L + λ ◦ Φ and taking into account that
dλ vanishes on vector fields of J1(Y ×Y E

∗) which are vertical over Y ×Y E
∗,

one gets by Proposition 2.3:

Ω(L+λ◦Φ)ω = ΩLω + λ ◦ ΩΦω

where we still denote by ΩLω and ΩΦω the pull-backs to J1(Y ×Y E
∗) of the

corresponding momentum forms on J1Y . Hence:

Θ(L+λ◦Φ)ω = θ∧Ω(L+λ◦Φ)ω + (L+ λ ◦ Φ)ω =

= θ∧ΩLω + Lω + λ ◦ (θ∧ΩΦω + Φω) = ΘLω + λ ◦ΘΦω

and, taking into account the notation we use for the pull-back of the differential
forms, this is precisely ψ∗Θ̂. 2
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At this point, we are ready to study the question of regularity for the con-
strained variational problems of the present work, which we shall consider
before closing this section.

First of all, it must be noted that the unconstrained variational problem with
Lagrangian density (L+λ◦Φ)ω on J1(Y ×Y E

∗) is not regular in the ordinary
sense, as the Hessian of the Lagrangian L+λ◦Φ contains zero rows due to the
independence from first derivatives of λ. Intrinsically, this arises from the fact
that the Cartan form Θ(L+λ◦Φ)ω of this variational problem can be projected

onto the form Θ̂ on J1Y ×Y E
∗ which, as we saw, is also the projection of the

Cartan form Θ̃. Taking into account Theorem 5.1 and inspired on the treat-
ment given in [16,17] for the regularity of higher order variational problems
whose Cartan form can be projected to lower order, we shall present the reg-
ularity question for the constrained variational problems we are considering,
as follows:

We aim to obtain a condition on the constrained variational problem that will
allow us to assure that for any section ŝ = (s, λ) ∈ Γ(X, J1Y ×Y E

∗), solution
of Cartan equation ŝ∗i

D̂
dΘ̂ = 0, ∀D̂ ∈ X(S ×Y E

∗), its projection onto Y is a
critical section of the constrained variational problem such that s = j1s and
λ = λELω

(j2s).

As we will prove, this problem can be solved in a satisfactory way by means
of the following regularity condition:

Definition 5.3 A constrained variational problem is regular when the polarity
D̂ ∈ TY (S ×Y E

∗) 7→ i
D̂
dΘ̂ ∈ ΛnT ∗(J1Y ×Y E

∗), on the space TY (S ×Y E
∗)

of vector fields that are tangential to the submanifold S ×Y E
∗ ⊂ J1Y ×Y E

∗

and vertical over Y , is injective.

Proposition 5.4 A constrained variational problem is regular if and only if
along the submanifold S ×Y E

∗ ⊂ J1Y ×Y E
∗ it holds:

det


∂2(L+λ◦Φ)

∂yi
µ∂y

j
ν

∂φα

∂yi
µ(

∂φα

∂yj
ν

)t
0

 6= 0 (5.10)

PROOF. Using flat connections associated to a system of local coordinates
(xν , yj, yjν , λα) on J1Y ×E∗ and taking into account formulas (2.2), (2.3), (3.1)
and (3.2), along the submanifold S ×Y E

∗ we get:

dΘ̂ =d (θ ∧ (ΩLω + λ ◦ ΩΦω) + (L+ λ ◦ Φ)ω) =

= d

(
∂L̂
∂yjν

)
∧ θj ∧ ων +

∂L̂
∂yj

θj ∧ ω
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where L̂ = L+ λ ◦ Φ and ων = i(∂/∂xν)ω.

Let D̂ = f jν
∂

∂yj
ν

+ fα
∂
∂λα

be an arbitrary vector field, vertical over Y and

tangential to the submanifold S×Y E
∗ ⊂ J1Y ×Y E

∗, that is, f jν (∂φ
α/∂yjν) = 0.

Computing now the inner product of D̂ with dΘ̂ one gets:

i
D̂
dΘ̂ = D̂

(
∂L̂
∂yjν

)
θj ∧ ων =

 ∂2L̂
∂yiµ∂y

j
ν

f iµ +
∂φα

∂yjν
fα

 θj ∧ ων
so i

D̂
dΘ̂ = 0 for some D̂ = f jν

∂

∂yj
ν

+ fα
∂
∂λα

∈ TY (S ×Y E
∗) if and only if the

homogeneous system of mn+ k linear equations in mn+ k unknowns (f jν , f
α)

holds:
∂2L̂

∂yiµ∂y
j
ν

f iµ +
∂φα

∂yjν
fα = 0,

∂φα

∂yiµ
f iµ = 0

Therefore, from the definition 5.3 of regularity, we conclude. 2

From here we are ready to prove the following:

Theorem 5.5 Let (Lω, S ⊂ J1Y ) be a regular constrained variational prob-
lem.

If ŝ = (s, λ) ∈ Γ(X,S ×Y E
∗) is solution of the Cartan equation:

ŝ∗i
D̂
dΘ̂ = 0, ∀D̂ ∈ X(S ×Y E

∗) (5.11)

then the projection s ∈ Γ(X, Y ) of s to Y is a critical section of the constrained
variational problem such that s = j1s and λ = λELω

(j2s).

PROOF. Let yj = sj(x1, . . . , xn) and yjν = sjν(x
1, . . . , xn) be the equations of

the section s in a local coordinate system.

Taking the inner product of dΘ̂ with vector fields of the form D̂ = (0, fα(∂/∂λα)) ∈
X(S×Y E

∗), for arbitrary fα, we obtain using the local formulas from the proof
of Proposition 5.4:

0 = ŝ∗i
D̂
dΘ̂ = fα

∂φα

∂yjν

(
∂sj

∂xν
− sjν

)
ω

therefore, due to the arbitrariness of fα, we get:

∂φα

∂yjν

(
∂sj

∂xν
− sjν

)
= 0
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Taking the inner product of dΘ̂ with vector fields of the form D̂ = (f jν (∂/∂y
j
ν), 0),

where f jν must satisfy f jν (∂φ
α/∂yjν) = 0 for D̂ to be tangential to S×Y E

∗, we
get:

0 = ŝ∗i
D̂
dΘ̂ = −f jν

∂2L̂
∂yiµ∂y

j
ν

(
∂si

∂xµ
− siµ

)
ω

where L̂ = L+λ◦Φ, and considering the arbitrariness of f jν under the tangency
condition f jν (∂φ

α/∂yjν) = 0, there exist functions gα ∈ C∞(X) satisfying:

− ∂2L̂
∂yiµ∂y

j
ν

(
∂si

∂xµ
− siµ

)
= gα

∂φα

∂yjν

So, the functions (∂si/∂xµ) − siµ and gα satisfy the system of homogeneous
linear equations:

∂2(L+ λ ◦ Φ)

∂yiµ∂y
j
ν

(
∂si

∂xµ
− siµ

)
+
∂φα

∂yjν
gα = 0,

∂φα

∂yiµ

(
∂si

∂xµ
− siµ

)
= 0

which, due to regularity condition and Proposition 5.4 has only the trivial
solution, and in particular: siµ = ∂si

∂xµ , that is, s = j1s.

Using now formula (5.5) for dΘ̂ and taking the inner product with tangential
vector fields D̂ of S ×Y E∗ we get, taking into account that s = j1s and
Φ(s) = 0:

0 = ŝ∗i
D̂
dΘ̂ = (j1s, λ)∗

(
θ(D̂) ◦ (ELω + λEΦω − dλ∧ΩΦω)

)
=

= (ELω(s)⊗ ω + λ ◦ EΦω(s)⊗ ω − dλ∧ΩΦω(s)) (D
v
s)⊗ ω

where D
v
s ∈ Ts(ΓS(X, Y )) is the vertical component along s of the projection

Ds on Y of the vector field D̂ŝ, arbitrary in Ts(ΓS(X, Y )) when D̂ ∈ X(S ×Y

E∗).

ThereforeD
v

s = Ps(D
v
s ) with arbitraryDv

s ∈ Γ(X, s∗V Y ), and thus Es(Ps(Dv
s )) =

0 for any Dv
s ∈ Γ(X, s∗V Y ), where we denote:

Es ⊗ ω = ELω(s)⊗ ω + λ ◦ EΦω(s)⊗ ω − dλ∧ΩΦω(s)

Following (3.9) we have now:

P+
s Es ⊗ ω = Es ⊗ ω + λEs

◦ EΦω(s)⊗ ω − dλEs
∧ΩΦω(s)

where we may compute λEs
= −Es ◦Ns using (3.6) as follows:

λEs
⊗ ω = −Es ◦Ns ⊗ ω = −(ELω(s) ◦Ns)⊗ ω − λ ◦ (EΦω(s) ◦Ns)⊗ ω+

+ dλ∧(ΩΦω(s) ◦Ns) = (λELω(s) − λ)⊗ ω
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hence:

P+
s Es ⊗ ω = Es ⊗ ω + (λELω(s) − λ) ◦ EΦω(s)⊗ ω−

− d(λELω(s) − λ)∧ΩΦω(s) = ELω(s)⊗ ω + λELω(s) ◦ EΦω(s)⊗ ω−
− dλELω(s)∧ΩΦω(s) = P+

s ELω(s)⊗ ω

and finally by (3.10):

0 = Es(Ps(Dv
s ))⊗ ω = (P+

s Es)(Dv
s )ω + d

(
λEs

◦ ΩΦω(s)(D
v
s )
)

=

= (P+
s ELω(s))(Dv

s ) + d
[
(λELω(s) − λ) ◦ ΩΦω(s)(D

v
s )
]
, ∀Dv

s ∈ Γ(X, s∗V Y )

Taking now in particular sectionsDv
s with compact support we get

∫
X(P+

s ELω(s))(Dv
s ) =

0, so that P+
s ELω(s) = 0, that is, s is critical for the constrained variational

problem, and d
[
(λELω(s) − λ) ◦ ΩΦω(s)(D

v
s )
]

= 0 for any Dv
s ∈ Γ(X, s∗V Y ).

Taking in the latter arbitrary functions f ∈ C∞(X) and sectionsDv
s ∈ Γ(X, s∗V Y )

we get:

0 = d
[
(λELω(s) − λ) ◦ ΩΦω(s)(fD

v
s )
]

= df ∧
[
(λELω(s) − λ) ◦ ΩΦω(s)(D

v
s )
]

and in virtue of the arbitrariness of f and Dv
s we obtain (λELω(s)−λ)◦ΩΦω(s) =

0, which by Hypothesis (HY1) of §3 leads to λELω(s) − λ = 0, concluding the
proof. 2

The relevance of this result can be seen in the fact that it proves, together
with the second part of Theorem 5.1, that for regular constrained variational
problems the lifting

i : s ∈ ΓS(X, Y ) 7→ (j1s, λELω(s)) ∈ Γ(X,S ×Y E
∗) (5.12)

defines a bijective mapping between the set of critical sections of the con-
strained variational problem and the set of solutions of Cartan equation (5.11).

This justifies the consideration of the fibrations S ×Y E
∗ π−→ Y

p−→ X (where

dim(S ×Y E
∗) = dim J1Y ), together with the (n + 1)-form Ω̂2 = dΘ̂

∣∣∣
S×Y E∗

as the basic structure to construct the multi-symplectic formalism of the con-
strained variational calculus. In particular, for unconstrained problems, where
S = J1Y , E = 0 and Φ = 0, we get S ×Y E

∗ = J1Y and Θ̂ = ΘLω, thus
recovering the ordinary multi-symplectic formalism.

29



6 Examples.

In this section we shall illustrate the general theory with two kinds of ex-
amples: problems with one independent variable (Mechanics) and two cases
with several independent variables, of a physical and geometrical interest re-
spectively: General Relativity in the sense of Palatini and a certain class of
isoperimetric problems for hypersurfaces in a Riemannian manifold.

6.1 Mechanics

In this case we shall deal with problems in one independent variable, X = R,
where the coordinate t of R represents the “time” variable. The bundle Y
will be in this case M × R, where M is a m-dimensional manifold with local
coordinates (qi), which shall be interpreted as the configuration space of a
mechanical system with m degrees of freedom. Therefore we have J1(M×R) =
TM×R, where the tangent bundle TM , which has the induced local coordinate
system (qi, q̇i), is called the “space of velocities” of the system.

Let Ldt be a Lagrangian density and S a constraint submanifold in TM × R
satisfying Hypotheses (HY1) and (HY2) from §3 with respect to a given k-rank
vector bundle on M×R. The corresponding theory in this case is the so-called
vakonomic mechanics (Arnold 1988), which has attracted much attention in
the last years.

A typical example in this situation is that of linear constraints S = ∆ × R,
where ∆ is a (m − k)-dimensional non integrable distribution, E is the pull-
back to M × R → M of the quotient TM/∆ and Φ: TM × R → E is the
bundle morphism induced by the canonical projection TM → TM/∆. The
application in this case of our general theory is instructive, as we may interpret
it in terms of the geometry of the distribution ∆ ⊂ TM , and recover in this
way from a non-linear perspective many of the classical results of the linear
non-holonomic systems.

If we follow the different questions under consideration for the general theory,
§3 delivers firstly the equations of vakonomic mechanics:

Φ(s) = 0, ELdt(s)⊗ dt+ λ(s) ◦ EΦdt(s)⊗ dt− dλ∧ΩΦdt(s) = 0 (6.1)

where the multiplier λ(s) ∈ C∞(R) is univocally determined by formula:

λ(s) = λELdt
(s) = (−ELdt ◦N)(s)

where N is a solution of the system (3.6) along j2s.
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The Cartan form Θ̃ from §4 is in this case a 1-form on J2(M×R) = T (2)M×R
(where T (2)M is the second order tangent bundle of M), which is projected
through the morphism (5.1) into the 1-form Θ̂ = ΘLdt + λ ◦ΘΦdt on J1Y ×Y

E∗ = (TM × R) ×M×R E
∗ (§5). Specially interesting are the conservative

(or autonomous) systems, which are those for which ∂/∂t is an infinitesimal
symmetry in the sense of Definition 4.4. The corresponding Noether invariant
H̃ = −i(∂/∂t)Θ̃ ∈ C∞(T (2)M × R), which can be projected via (5.1) to the

function Ĥ = −i(∂/∂t)Θ̂ ∈ C∞((TM × R)×M×R E
∗), is a first integral for the

equations of movement (6.1), called energy.

Regarding the regularity (§5), it is easy to see, applying Proposition 5.4 and
the theorem of the inverse function, that Θ̂ defines on the (2m+1)-dimensional
manifold S ×M×R E

∗ a contact 1-form whose local expression is:

Θ̂ = p̂idq
i − Ĥdt

where the momenta p̂i ∈ C∞(S ×M×R E
∗) are given by:

p̂i =
∂L
∂q̇i

+ λα
∂φα

∂q̇i
(6.2)

In this case (5.12) gives a canonical bijective correspondence between critical
sections of the constrained variational problem and the integral curves of the
characteristic vector field D̂ of the contact 1-form Θ̂, that is, the only vector
field D̂ ∈ X(S ×M×R E

∗) with i
D̂
dΘ̂ = 0, D̂(t) = 1.

In particular, for conservative systems one obtains the corresponding Hamil-
tonian formalism taking on the 2m-dimensional manifold M2m = (S×M×RE

∗)

the symplectic metric Ω2 = dΘ̂
∣∣∣
M2m

and the Hamiltonian Ĥ
∣∣∣
M2m

(see [2] for

a local version of this result).

In the following we shall illustrate the results above with three classical ex-
amples taking special emphasis on the solvability of equations (3.6), which
constitute the fundamentals of this work.

The Catenary

This is the mechanical system with two degrees of freedom, configuration space
M = R2 coordinated by (x, y), Lagrangian L : TM × R → R given by L = y
and (non-linear) constraint S ⊂ TM × R defined by

√
ẋ2 + ẏ2 − 1 = 0.

Taking as bundle q : E → M × R the direct product (M × R) × R, and the
morphism Φ: TM × R → E defined by the function Φ =

√
ẋ2 + ẏ2 − 1, for

ẋ2 + ẏ2 6= 0 we get the following momentum form ΩΦdt and Euler-Lagrange
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operator EΦdt associated to the constraint:

ΩΦdt =
1

(ẋ2 + ẏ2)1/2
(ẋdx+ ẏdy) , EΦdt =

ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
(ẏdx− ẋdy)

The system of equations (3.6) has, on the dense open subset defined by ẋÿ −
ẏẍ 6= 0, the only solution N ∈ Γ(T (2)M × R, (E∗ ⊗ TM)T (2)M×R):

N =
(ẋ2 + ẏ2)1/2

ẋÿ − ẏẍ

(
ẏ
∂

∂x
− ẋ

∂

∂y

)

Hence we get on this open subset the multiplier:

λELdt
= −ELdt ◦N =

ẋ(ẋ2 + ẏ2)1/2

ẋÿ − ẏẍ
(6.3)

Applying now (5.2) we get Cartan’s 1-form:

Θ̂ =
λ

(ẋ2 + ẏ2)1/2
(ẋdx+ ẏdy) + (y − λ)dt

and, substituting λ by the expression (6.3), we also obtain the 1-form Θ̃.

As L and Φ are independent of time, the system is conservative and its energy
is the function Ĥ = −i∂/∂tΘ̂ = λ− y.

Last, the determinant (5.10) along S ×M×R E
∗ is −λ, so that for λ 6= 0 the

catenary problem is a regular constrained variational problem. The momenta
p̂x, p̂y defined on S×M×RE

∗ by formulas (6.2) are, respectively, λẋ and λẏ, thus
obtaining a Hamiltonian formulation for the problem onM4 = (S×M×RE

∗)t=0,
with symplectic 2-form Ω2 = dp̂x ∧ dx + dp̂y ∧ dy and Hamiltonian Ĥ =√
p̂2
x + p̂2

y − y.

The Soap Film

In this case M = R2, coordinated by (y, v), and L = 2πy(1 + ẏ2)1/2. The
constraint S is given by the affine equation v̇ − πy2 = 0. Taking again as
bundle E the direct product (M ×R)×R and the morphism Φ defined by the
function Φ = v̇ − πy2, one gets: ΩΦdt = dv and EΦdt = −2πydy, so that the
system (3.6) has for y 6= 0 the only solution N = −(1/2πy)(∂/∂y). Therefore
on the dense open subset y 6= 0 one obtains the multiplier:

λELdt
= −ELdt ◦N =

1 + ẏ2 − yÿ

y(1 + ẏ2)3/2
(6.4)
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From (5.2) we obtain the following Cartan 1-form:

Θ̂ =
2πyẏ√
1 + ẏ2

dy + λdv +

(
2πy√
1 + ẏ2

− πy2λ

)
dt

and from here we also obtain Θ̃ substituting λ by the expression (6.4).

This system is also conservative, and its energy is Ĥ = −i∂/∂tΘ̂ = −2πy√
1+ẏ2

+

πy2λ. It is also regular, as the determinant (5.10) is −2πy/(1 + ẏ2)3/2 6= 0 on
the dense open subset we are considering. Regarding the momenta p̂y and p̂v
defined by (6.2), they are respectively 2πyẏ/

√
1 + ẏ2 and λ, which together

with the constraint equation allow us to obtain a Hamiltonian formulation on
M4 = (S ×M×R E

∗)t=0 with symplectic 2-form Ω2 = dp̂y ∧ dy + dp̂v ∧ dv and

Hamiltonian Ĥ = −
√

4π2y2 − p̂2
y + πy2p̂v.

The Skateboard on an inclined plane

The configuration space of this problem is M = R2
(x,y) × S1

ϕ where x and y
represent the position of the skateboard on the plane and ϕ its angle with
respect to the x-axis. The Lagrangian L : TM × R → R is the function L =
(1/2)m(ẋ2 + ẏ2)+(1/2)Iϕ̇2−gy (g=gravity), and the constraint S ⊂ TM ×R
is the linear submanifold defined by ẋ sinϕ − ẏ cosϕ = 0. Taking again as
bundle q : E → M × R the direct product (M × R) × R and the morphism
Φ: TM × R → E defined by the function Φ = ẋ sinϕ− ẏ cosϕ we obtain the
following momentum form ΩΦdt and Euler-Lagrange operator EΦdt associated
to the constraint:

ΩΦdt = sinϕdx− cosϕdy

EΦdt = −ϕ̇ cosϕdx− ϕ̇ sinϕdy + (ẋ cosϕ+ ẏ sinϕ)dϕ

The system of equations (3.6) has solutions for ẋ cosϕ+ ẏ sinϕ 6= 0 given by
the affine subspace of Γ(TM × R, (E∗ ⊗ TM)TM×R):

N =

(
cosϕ(ẋ cosϕ+ ẏ sinϕ)

∂

∂x
+ sinϕ(ẋ cosϕ+ ẏ sinϕ)

∂

∂y
+ ϕ̇

∂

∂ϕ

)
f+

+
1

ẋ cosϕ+ ẏ sinϕ

∂

∂ϕ
, f ∈ C∞(TM × R)

(6.5)
obtaining in this way a family of multipliers:

λELdt
= −ELdt ◦N = (mẍ cosϕ+ (g +mÿ) sinϕ)(ẋ cosϕ+ ẏ sinϕ)f+

+ Iϕ̈ϕ̇f +
Iϕ̈

ẋ cosϕ+ ẏ sinϕ
, f ∈ C∞(TM × R)

(6.6)
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Applying (5.2) we obtain Cartan’s 1-form:

Θ̂ =(mẋ+ λ sinϕ)dx+ (mẏ − λ cosϕ)dy + Iϕ̇dϕ−

−
(

1

2
m(ẋ2 + ẏ2) +

1

2
Iϕ̇2 + gy

)
dt

and from this, we may obtain a family of Cartan 1-forms Θ̃ substituting λ by
the expressions (6.6)

As for the previous examples this is a conservative system with energy:

Ĥ = −i∂/∂tΘ̂ =
1

2
m(ẋ2 + ẏ2) +

1

2
Iϕ̇2 + gy

Regarding the regularity, the determinant (5.10) is −mI 6= 0, so that our
system is also regular. Equations (6.2) give us the following momenta:

p̂x = mẋ+ λ sinϕ, p̂y = mẏ − λ cosϕ, p̂ϕ = Iϕ̇

which, together with the constraint equation allow us to obtain a Hamiltonian
formulation for this problem on M6 = (S×M×RE

∗)t=0 with symplectic 2-form
Ω2 = dp̂x ∧ dx+ dp̂y ∧ dy + dp̂ϕ ∧ dϕ and Hamiltonian:

Ĥ =
1

2m
(p̂x cosϕ+ p̂y sinϕ)2 +

1

2I
p̂2
ϕ + gy

6.2 General Relativity as a first order constrained variational problem

Following Palatini (1919) the starting point for the study of General Relativity
as a first order variational problem is the fibre product M×X C over a 4-
dimensional manifold X oriented by a volume element ω (the space-time)
of the bundle ρ : M → X of Lorentz metrics on X and the affine bundle
% : C → X (with associated vector bundle S2T ∗X ⊗ TX) of symmetric linear
connections on X.

On the bundle J1(M×X C) we consider the constrained variational problem
whose Lagrangian density is the scalar curvature associated to a metric g ∈
Γ(X,M) and to a linear connection ∇ ∈ Γ(X, C):

Lω(j1
x(g,∇)) =

(
trace(g−1 · Curv∇)ωg

)
x

(Curv∇ =3-covariant, 1-contravariant curvature tensor of ∇, and ωg =volume
element associated to g) and whose constraint submanifold is:

S =
{
j1
x(g,∇) /∇(x) = ∇g(x) = Levi-Civita connection of g

}
⊂ J1(M×X C)
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In a local coordinate system (xν , gαβ, γ
σ
αβ, gαβ,ρ, γ

σ
αβ,ρ)α≤β of J1(M×X C), with

ω = dx1 ∧ . . . ∧ dxn, we have the following expression for the Lagrangian
density:

Lω = Rσ
σµνg

µν
√
− det gdx1 ∧ . . . ∧ dxn (6.7)

where Rτ
σµν = γτµν,σ − γτσν,µ + γαµνγ

τ
ασ − γασνγ

τ
αµ and (gµν) = g−1(dxµ, dxν), and

the following equations for the constraint submanifold:

φσµν =
(
γσµν −

1

2
gσρ(gρµ,ν + gνρ,µ − gµν,ρ)

)√
− det g = 0

Taking in this case as bundle E the pull-back to M×X C of the vector bundle
S2T ∗X⊗TX, the constraint submanifold is S = Φ−1(0E), where Φ: J1(M×X

C) → E is the bundle morphism defined by Φ(j1
x(g,∇))ω = (∇(x)−∇g(x))⊗

ωg, whose local expression is given by the functions φσµν defined above.

Taking into account the canonical identification:

V (M×X C)∗ ⊗ E = (VM∗ ⊕M×XC V C∗)⊗ E =

=
[(
S2TX ⊗ S2T ∗X ⊗ TX

)
⊕X

(
S2TX ⊗ T ∗X ⊗ S2T ∗X ⊗ TX

)]
M×XC

simple computations prove that the momentum form ΩΦω and Euler-Lagrange
operator EΦω associated to the E-valued Lagrangian density Φω have the local
expressions:

ΩΦω =
∑
µ≤ν

−1

2
gσρ(ων⊗dgρµ+ωµ⊗dgνρ−ωρ⊗dgµν)⊗

(
dxµ · dxν ⊗ ∂

∂xσ

)
(6.8)

EΦω ⊗ ω =

(EΦω)M ⊗ ω,
∑
α≤β

dγναβ ⊗
(

dxα · dxβ ⊗ ∂

∂xν

)
⊗ ωg

 (6.9)

where ωµ = i∂/∂xµωg, dxµ · dxν is the symmetrization of the tensor product
dxµ ⊗ dxν and (EΦω)M is the VM∗ ⊗ E-component of EΦω.

Given a section (g,∇) ∈ Γ(X,M×X C), and taking (6.8) into account, we ob-
tain that for a sectionN =

∑
µ≤ν Nµν

∂
∂gµν

+
∑
α≤β N

ν
αβ

∂
∂γν

αβ
of (g,∇)∗V (M×XC)

to be incident with ΩΦω(g,∇), there must hold that for any indices σ, µ, ν:

Nρµg
σρων +Nνρg

σρωµ −Nµνg
σρωρ = 0

where Nαβ is defined as Nβα for α > β, therefore:

Nσµ
∂

∂xν
+Nνσ

∂

∂xµ
−Nµν

∂

∂xσ
= 0, Nµν

∂

∂xσ
+Nσµ

∂

∂xν
−Nνσ

∂

∂xµ
= 0

and hence Nσµ
∂
∂xν = 0, that is: Nσµ = 0.
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This proves, in particular, taking the 1-jets at any point, that the matrix(
∂φσµν/∂gαβ,ρ

)
has constant rank 40 along S and therefore, that all the condi-

tions in (HY1) are satisfied.

On the other hand, taking into account the expression (6.9) for EΦω ⊗ ω, the
only section N ∈ Γ (J2(M×X C), V (M×X C)⊗ E∗) solution for the system
(3.6) is given by:

N ⊗ ωg =

[
0,

∂

∂γναβ
⊗
(

∂

∂xα
· ∂

∂xβ
⊗ dxν

)
⊗ ω

]
(6.10)

In fact, except for the presence of the volume element ω, the second component
in (6.10) is simply the pull-back to J2(M×X C) of the identity section I of
E ⊗ E∗.

Therefore, our constraint submanifold S = Φ−1(0E) also satisfies Hypothesis
(HY2) of the theory.

Taking now into account (see, for example [32, p.500]) that the Euler-Lagrange
operator ELω of the Lagrangian density (6.7) as unconstrained variational
problem is given by the expression:

ELω(g,∇)⊗ ω =
[
Eins(g,∇)ωg, d

∇(g−1 ⊗ ωg)− Sym(Id⊗ ·d∇(g−1 ⊗ ωg))
]

(6.11)
where Eins(g,∇) is the Einstein tensor associated to the metric tensor g and
to the linear connection ∇, d∇ denotes the covariant derivative of g−1 ⊗ ωg
with respect to ∇ and ·d∇(g−1⊗ωg) denotes the contraction of a contravariant
index of d∇(g−1 ⊗ ωg) with the covariant index produced by d∇. We obtain
thus the following expression for λELω(g,∇):

λELω(g,∇)ωg = −〈ELω(g,∇), N(g,∇)⊗ ωg〉 = −〈ELω(g,∇), [0, I⊗ ω]〉 =

=
[
0,−d∇(g−1 ⊗ ωg) + Sym(Id⊗ ·d∇(g−1 ⊗ ωg))

]
(6.12)

From this result and from (6.8), (6.9) and (6.11) we obtain the following Euler-
Lagrange operator for the constrained variational problem:

P+
(g,∇) (ELω(g,∇))⊗ ω = ELω(g,∇)⊗ ω + λELω(g,∇) ◦ EΦω(g,∇)⊗ ω−

− dλELω(g,∇)∧ΩΦω(g,∇) =

=
[
Eins(g,∇)ωg, d

∇(g−1 ⊗ ωg)− Sym(Id · d∇(g−1 ⊗ ωg))
]
+

+
[
0,−d∇(g−1 ⊗ ωg) + Sym(Id · d∇(g−1 ⊗ ωg))

]
=

= [Eins(g,∇)ωg, 0]

Therefore, following Corollary 3.9, an admissible section (g,∇g) is critical for
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the constrained variational problem if and only if Eins(g,∇g) = 0.

The key point is the following: the constraint condition (that is, ∇ = ∇g)
is in this case equivalent to the second group of Euler-Lagrange equations
d∇(g−1 ⊗ ωg) − Sym(Id · d∇(g−1 ⊗ ωg)) = 0 of the Lagrangian density as an
unconstrained variational problem (see [32, p.502]), and hence the critical sec-
tions for the constrained and unconstrained variational problem are the same.
However this only holds because of the particular choice of the Lagrangian
(6.7). In general for other possible choices to establish the theory this circum-
stance would automatically disappear, producing then the constrained and
unconstrained setup different variational problems.

The Cartan form of the constrained variational problem is:

Θ̃ = ΘLω + λELω
◦ΘΦω

where λELω
(j2
x(g,∇)) = λELω(g,∇)(x) is defined by (6.12) and where ΘLω and

ΘΦω are the 4-forms on J1(M×X C):

ΘLω = gµν
[
dγσµν ∧ ωσ − dγσσν ∧ ωµ + (γαµνγ

σ
ασ − γασνγ

σ
αµ)ωg

]
(6.13)

ΘΦω =
∑
µ≤ν

[
γσµνωg −

1

2
gσρ(dgµρ ∧ ων + dgνρ ∧ ωµ − dgµν ∧ ωρ)

]
⊗

⊗
(

dxµ · dxν ⊗ ∂

∂xσ

)

As the multiplier λELω
only depends on the first derivatives and vanishes on

the constraint submanifold we conclude that Θ̃ is a 4-form on J1(M×X C)

such that Θ̃
∣∣∣
S

= ΘLω.

Considering definition 5.3, in this case regularity does not hold, the tangential
vector fields generated by ∂/∂γσµν,ρ are in the kernel of the corresponding

polarity D ∈ TY (S ×Y E
∗) 7→ iDdΘ̂, which therefore is not injective.

Let us finish the study of this example by noting that the constrained vari-
ational problem under consideration is nothing else but the Lagrangian re-
duction of the usual metric formulation of General Relativity by the bundle
morphism τ : J1M→M×X C defined by the rule τ(j1

xg) = (g(x),∇g(x)). Fol-
lowing the general framework of Lagrangian reduction (see, for example [10]),
Hilbert’s Lagrangian is, precisely, τ ∗(1)Lω where Lω is Palatini’s Lagrangian

defined on J1(M×X C) by formula (6.7) and τ(1) : J
2M → J1(M×X C) is

the 1-lifting of τ (that is, τ(1)(j
2
xg) = j1

x(τ ◦ j1g)). As we have seen in this
example a metric tensor g ∈ Γ(X,M) satisfies Einstein equations if and only
if τ ◦ j1g = (g,∇g) ∈ ΓS(X,M×X C) is a critical section of the constrained
variational problem of Palatini and conversely (reduction and reconstruction).
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Regarding the corresponding Cartan forms, following (6.13) ΘLω can be pro-
jected to M×X C and Θτ∗

(1)
Lω = τ ∗ΘLω, thus recovering the well-known result

that the Cartan form of Hilbert’s Lagrangian, which in principle should be
defined on J3M, can be projected to J1M.

6.3 Isoperimetric problems for hypersurfaces in a Riemannian Manifold

In this case we shall consider immersions of a given n-dimensional manifold
X into a Riemannian manifold M with metric tensor g.

Let p : Y = X ×M → X be the trivial bundle defined by the product of both
manifolds and identify its sections with mappings s : X → M . Given a fixed
volume element ω on X, we shall consider the constrained variational problem
on J1Y whose constraint submanifold is:

S = {j1
xs / ωg = ω} ⊂ J1Y

where ωg is the volume element induced on X by the first fundamental form of
the hypersurface g = s∗g, and ω is the fixed volume element on X. This is the
isoperimetric constraint, according to which admissible sections s ∈ ΓS(X, Y )
are immersions that induce a fixed “area” element on the hypersurface s(X) ⊂
M . The Lagrangian densities we shall consider for our constrained problem
will be of the form:

Lω(j1
xs) = s∗(iDωg) (6.14)

where ωg is the volume (n + 1)-form on M induced by the metric tensor g,
and D is a fixed vector field on M . As can be seen by a simple application
of Stokes’ Theorem, in the case that divgD = 1 and s(X) is the boundary
of a compact domain in M , this Lagrangian density represents the volume
enclosed by the hypersurface.

Taking the bundle E = Y × R, the constraint submanifold is S = Φ−1(0),
where Φ: J1Y → E is defined by Φ(j1

xs)ω = ωg(x) − ω(x). Considering local
coordinate systems (xν) for X with ω = dx1 ∧ . . . ∧ dxn, (yj) for M with
g = gijdy

i · dyj and the induced coordinates (xν , yj, yjν) on J1Y , the function
defining the constraint is:

φ =
√

det g − 1 (6.15)

where g = (gµν) with gµν = yiµy
j
νgij. On the other hand if we have the local

expression D = qj(∂/∂yj) (qj ∈ C∞(M)), the Lagrangian density defined by
(6.14) is:

Lω = (−1)j+1qj
√

det g det(yiν)[j]dx
1 ∧ . . . ∧ dxn (6.16)

where det(yiν)[j] is the minor obtained by elimination of the j-th row of the
matrix (yiν)
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From (6.15) we may compute the associated momentum form ΩΦω and Euler-
Lagrange operator EΦω. Using the natural identification of V Y with X×TM ,
these are:

ΩΦω = P⊥ · ωg, EΦω ⊗ ω = −iHg ⊗ ωg

where H(j2
xs) denotes the TM -valued function on J2Y that produces the mean

curvature vector associated to s : X → M at s(x) (that is, the trace of the
Weingarten endomorphism), P⊥ denotes the T ∗M ⊗ TX-valued function on
J1Y defined at j1

xs as the orthogonal projection of Ts(x)M to TxX given by
s : X →M , and P⊥ ·ωg denotes the contraction of its contravariant component
with a covariant component of ωg.

It is clear that (∂φ/∂yiµ) vanishes only if P⊥(j1
xs) = 0, that is, at singular points

with Ims∗ = {0}. Therefore the constraint satisfies Hypothesis (HY1). On the
other hand, on a dense open subset of J2Y there exists a unique solution of
the system of linear equations (3.6), the section N ∈ Γ(J2Y,E∗ ⊗ V Y ) =
Γ(J2Y, TM) defined by:

N ⊗ ωg = − H

‖H‖2
⊗ ω

defined at those points j2
xs where the mean curvature ‖H‖ of the hypersurface

does not vanish. Hence Hypothesis (HY2) also holds.

Lengthy but trivial computations lead us from (6.16) to the intrinsic and
local expressions of the Euler-Lagrange operator associated to the Lagrangian
density Lω as a variational problem without constraints:

ELω ⊗ ω = dyk ⊗ (−1)k+1 det(yiν)[k]
∂

∂yj

(
qj
√

det g
)

dx1 ∧ . . . ∧ dxn =

= (divgD)dyk ⊗ s∗i(∂/∂yk)ωg = (divgD)iNg ⊗ ωg

(6.17)

where divgD stands for the divergence of the vector field D with respect to the
volume element ωg and N(j2

xs) ∈ Ts(x)M is the normal vector field associated
to the hypersurface defined by s and to the chosen orientations ωg and ω at
s(x).

It must be noted that ELω⊗ω can be projected from J2Y to J1Y . This reflects
the fact that even though s∗iDωg does depend on j1s, its differential does not
depend on j2s, in fact ds∗iDωg = s∗diDωg.

The Lagrange multiplier (3.14) is then:

λELω
= −ELω ◦N = (divgD)g

(
N,

H

‖H‖2

)
=

divgD

‖H‖
(6.18)

where the last equality holds if we assume that the orientations are chosen so
that g(N,H) > 0.
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From this result we obtain the following expression for the Euler-Lagrange
operator of the constrained variational problem:

P+
s ELω(s)⊗ ω = ELω(s)⊗ ω + λELω(s)EΦω(s)⊗ ω − dλELω(s)∧ΩΦ(s) =

= (divgD)iNg ⊗ ωg −
divgD

‖H‖
iHg ⊗ ωg − d

(
divgD

‖H‖

)
∧(P⊥ · ωg) =

= −d
(

divgD

‖H‖

)
∧(P⊥ · ωg) = −i

gradg

(
divgD

‖H‖

)g ⊗ ωg

where gradg
(

divgD

‖H‖

)
stands for the gradient of the function

divgD

‖H‖ on the hyper-
surface, with respect to its first fundamental form g, as a vector field on the
ambient manifold M defined along s(X), which coincides with the orthogonal

projection to s(X) of the gradient with respect to g of the function
divgD

‖H‖ .

Therefore, following Corollary 3.9, an admissible section s is critical for the
constrained variational problem if and only if gradg

(
divgD

‖H‖

)
= 0. For the case

divgD = 1 (i.e., for the Lagrangian density that gives the enclosed volume)
the solutions are those hypersurfaces with (non-vanishing) constant mean cur-
vature ‖H‖.

The Cartan form of the constrained variational problem is:

Θ̃ = ΘLω + λELω
◦ΘΦω

where λELω
(j2
xs) = λELω(s)(x) is defined by (6.18) and where ΘLω and ΘΦω are

the n-forms on J1Y = (T ∗X⊗X×M TM) whose intrinsic and local expressions
are:

ΘLω(j
1
xs) = dyj ∧ s∗

(
i(∂/∂yj)iDωg

)
(s) + (1− n)s∗ (iDωg) (x) =

= (−1)k+1qk
√

det g
[
(1− n) det(yiν)[k]dx

1 ∧ . . . ∧ dxn+

+sgn(k − j)(−1)j+1 det(yiν)
[µ]
[k,j]dy

j ∧ dx1 ∧ . . .[µ] . . . ∧ dxn
]

ΘΦω(j
1
xs) = P⊥(s(x))∧ωg(x) + (1− n)ωg(x)− ω(x) =

= gµνykνgkj

√
det gdx1 ∧ . . . ∧ dxµ−1 ∧ dyj ∧ dxµ+1 ∧ . . . ∧ dxn+

+ (1− n)
√

det gdx1 ∧ . . . ∧ dxn − dx1 ∧ . . . ∧ dxn

(6.19)

where det(yiν)
[µ]
[k,j] stands for the minor of (yiν) corresponding to the elimination

of the k, j-th rows and µ-th column, and (gµν) stands for the inverse matrix
of (gµν).

Any vector field V ∈ X(M), infinitesimal symmetry for ωg and D (i.e. LV ωg =
0, [V,D] = 0) naturally induces a p-vertical symmetry of our constrained vari-
ational problem V ∈ X(Y ). Applying Noether Theorem 4.5 for these sym-
metries and the implicit expressions in (6.19) we may compute the following
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Noether invariants:

(j2s)∗ij2VΘ̃ = s∗iV

(
i
D+

divgD

‖H‖ N
ωg

)

Thus obtaining non-trivial (n− 1)-forms that are closed whenever the hyper-
surface defined by s is critical for our constrained variational problem.

Appendix: Independence of the theory with respect
to the vector bundle E and the bundle morphism Φ: J1Y → E defin-
ing the constraint submanifold S = Φ−1(0E).

As can be seen, the theory is based on the consideration of a vector bundle
q : E → Y and a bundle morphism Φ: J1Y → E on Y , which satisfy Hypothe-
ses (HY1) and (HY2), and such that the constraint submanifold is given by
S = Φ−1(0E). A natural question now is: Is the whole theory independent of
the chosen vector bundle E and morphism Φ?. In this appendix we shall give
a precise answer proceeding as follows:

First of all, we shall impose Hypothesis (HY2) from §3 in the following way,
more suitable for our purposes:

Hypothesis (HY2’) On a dense open subset of S(2) ⊂ J2Y (the inverse
image of S ⊂ J1Y by the canonical projection), there exists a section N ∈
Γ(S(2), (E∗ ⊗ V Y )J2Y ), solution of the system of equations:

ΩΦω ◦N = 0, EΦω ◦N = I (3.6’)

Locally:

m∑
j=1

∂φα

∂yjν
N j
β = 0,

m∑
j=1

[
∂φα

∂yj
−
∑
ν

∂

∂xν

(
∂φα

∂yjν

)]
N j
β = δαβ (3.7’)

along S(2), 1 ≤ α, β ≤ k, 1 ≤ ν ≤ n.

Let {N}(E,Φ) be the set of solutions of the system of equations (3.6’). If
q′ : E ′ → Y and Φ′ : J1Y → E ′ are another k-rank vector bundle and bundle
morphism on Y satisfying Hypothesis (HY1), then due to this hypothesis there
exists a unique vector bundle isomorphism τ : ES → E ′

S between the vector
bundles on S induced by E and E ′, such that with the usual identifications:
dΦ′ = τ ◦ dΦ along S. Let τ (2) : (E∗ ⊗ V Y )S(2) → (E ′∗ ⊗ V Y )S(2) be the iso-
morphism defined by the action of τ on E∗

S(2) and the identity morphism on
V YS(2) . In this situation we have the following:

41



Lemma 1 E ′ and Φ′ satisfy Hypothesis (HY 2′) and it holds:

{N ′}(E′,Φ′) = τ (2){N}(E,Φ)

PROOF. Given N ∈ {N}(E,Φ), we shall see that N ′ = τ (2)N is a solution for
the system of linear equations ΩΦ′ω ◦N = 0, EΦ′◦N = I′. In a local coordinate
system, let (aα

′
α ), aα

′
α ∈ C∞(S), 1 ≤ α, α′ ≤ k be the matrix of the isomorphism

τ : ES → E ′
S with respect to trivializations eα, e

′
α′ of the bundles E and E ′.

The equation dΦ′ = τ ◦dΦ along S can be locally expressed by dφ′α
′
= aα

′
α dφα.

On the other hand, if N = N j
αe
∗α ⊗ ∂

∂yj then N ′ = τ (2)N = N ′j
α′e

′∗α′ ⊗ ∂
∂yj

where N ′j
α′ = bαα′N

j
α for (bαα′) the inverse matrix of (aα

′
α ). Therefore:

(ΩΦ′ω ◦N ′)β
′ν
α′ =

∂φ′β
′

∂yjν
N ′j
α′ = aβ

′

β

∂φβ

∂yjν
bαα′N

j
α = aβ

′

β b
α
α′
∂φβ

∂yjν
N j
α = 0

(EΦ′ω ◦N ′)β
′

α′ =

(
∂φ′β

′

∂yj
− ∂

∂xν

(
∂φ′β

′

∂yjν

))
N ′j
α′ =

=

(
aβ

′

β

∂φβ

∂yj
− ∂

∂xν

(
aβ

′

β

∂φβ

∂yjν

))
bαα′N

j
α =

= aβ
′

β b
α
α′

(
∂φβ

∂yj
− ∂

∂xν

(
∂φβ

∂yjν

))
N j
α − bαα′

∂aβ
′

β

∂xν
∂φβ

∂yjν
N j
α =

= aβ
′

β b
α
α′δ

β
α = δβ

′

α′

Hence, along the dense open subset of S(2) where N is defined we get that
N ′ = τ (2)N is a solution for the system of equations ΩΦ′ω ◦N ′ = 0, EΦ′ω ◦N ′ =
I′, and therefore E ′ and Φ′ satisfy Hypothesis (HY2’).

If {N ′}(E′,Φ′) is the corresponding set of solutions, using the same argument for
the inverse isomorphism τ−1, we get the identity {N ′}(E′,Φ′) = τ (2){N}(E,Φ). 2

Let now {Ps}(E,Φ) and {P+
s }(E,Φ) be the families of projectors defined by the

set of solutions {N}(E,Φ) for each admissible section s ∈ ΓS(X, Y ) by formulas

(3.8) and (3.9), and let {Θ̃}(E,Φ) be the corresponding family of Cartan forms
along S(2) defined by (4.1).

Proposition 1 The families {Ps}(E,Φ), {P+
s }(E,Φ) and {Θ̃}(E,Φ) do not depend

on the chosen vector bundle E nor on the bundle morphism Φ: J1Y → E
defining the constraint submanifold S = Φ−1(0E).

PROOF. If q′ : E ′ → Y and Φ′ : J1Y → E ′ are another k-rank vector bundle
and bundle morphism on Y satisfying Hypothesis (HY1), following the pre-
vious Lemma it suffices to prove that if Ps, P

+
s and Θ̃ are the corresponding
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projections and Cartan form along S(2) for a solution N ∈ {N}(E,Φ) and P ′s,

P ′+s and Θ̃′ the corresponding ones for the solution N ′ = τ (2)N ∈ {N ′}(E′,Φ′)

then: Ps = P ′s, P
+
s = P ′+s and Θ̃ = Θ̃′.

To prove the identity Ps = P ′s, following (3.8), it suffices to see that Ns ◦
(j1Dv

s )Φ = N ′
s ◦ (j1Dv

s )Φ
′ for any Dv

s ∈ Γ(X, s∗V Y ), which is proven by the
following local computation:

N ′
s ◦ (j1Dv

s )Φ
′ = N ′

s ◦ dΦ′(j1Dv
s ) = N ′j

α′dφ
′α′(j1Dv

s )
∂

∂yj
=

= bαα′N
j
αa

α′

β dφβ(j1Dv
s )

∂

∂yj
= bαα′a

α′

β N
j
αdφ

β(j1Dv
s )

∂

∂yj
=

= N j
αdφ

α(j1Dv
s )

∂

∂yj
= Ns ◦ dΦ(j1Dv

s ) = Ns ◦ (j1Dv
s )Φ

In a similar way, the equation Es(N) ◦ ΩΦω = Es(N ′) ◦ ΩΦ′ω is proven and
therefore following formula (3.10) and the identity Ps = P ′s we conclude that
also P+

s = P ′+s .

Finally, applying (4.1) and considering the identity ELω(N) ◦ (θ∧ΩΦω) =
ELω(N ′) ◦ (θ∧ΩΦ′ω) along S(2) (which is proven with the same local com-
putations as for the previous identities), we obtain Θ̃ = Θ̃′ along S(2), thus
concluding the proof. 2

As a consequence of this proposition, the whole Theory developed in §3 and
the corresponding Cartan and Noether formulations in §4 do not depend on
the chosen vector bundle E and bundle morphism Φ: J1Y → E that define
the constraint submanifold S = Φ−1(0E).

Regarding the contents of §5, we may state the following: Given (E,Φ) and
(E ′,Φ′), the vector bundle isomorphism τ : ES → E ′

S induces an isomorphism
between S ×Y E

∗ = E∗
S and S ×Y E

′∗ = E ′∗
S that transforms one to the other

both Cartan forms Θ̂ = ΘLω + λ ◦ ΘΦω and Θ̂′ = ΘLω + λ′ ◦ ΘΦ′ω defined
by formulae (5.2), and gives in this way a canonical isomorphism between
both variational formulations on S ×Y E

∗ and S ×Y E
′∗ as described in §5. In

particular, we must note the independence of the notion of regularity (Defi-
nition 5.3) with respect to the chosen pair (E,Φ) that defines the constraint
submanifold.

Acknowledgements

This work has been partially supported by the Spanish Ministerio de Ciencia
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[2] Arnol’d, V.I., Kozlov, V.V., Nĕıshtadt, A.I.: Dynamical Systems III.
Encyclopaedia of Mathematical Sciences 3. Springer Verlag, Berlin, 1988.

[3] Bliss, G.A.: The problem of Lagrange in the calculus of variations. Am. J. Math.
52, 673–744 (1930)

[4] Cantrijn, F., Ibort, A., de León, M.: On the geometry of multisymplectic
manifolds. J. Austral. Math. Soc. Ser. A 66(3), 303–330 (1999)

[5] Cardin, F., Favretti, M.: On nonholonomic and vakonomic dynamics of
mechanical systems with nonintegrable constraints. J. Geom. Phys. 18(4), 295–
325 (1996)
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[36] Śniatycki, J.: On the geometric structure of classical field theory in Lagrangian
formulation. Proc. Cambridge Philos. Soc. 68, 475–484 (1970)

[37] Sternberg, S.: Some preliminary remarks on the formal variational calculus of
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