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Introduction

One of the main reasons of that renewed interest in the calculus of varia-
tions with constraints of the last years is, without doubt, the problem of
Lagrangian reduction, according to which a certain kind of variational prob-
lems, called “reducible”, can be “reduced” to lower order constrained varia-
tional problems [1, 2, 4, 7, 12]. Unlike the classical treatment of constrained
problems, where the “infinitesimal admissible variations” are those induced
by deformations satisfying the constraint, for this new class of problems,
infinitesimal variations can be more general than the classical ones, they
may even not have relation with the constraints of the problem (vakonomic
and non-holonomic mechanics [5], graviting relativistic fluids, H-minimal La-
grangian submanifolds [8], etc.). In this situation, it seems natural to revise
the traditional Lagrange multiplier method with the object to explore its
possible validity within this new context. The subject is still more relevant,
taking into account the lack at the present time of a reasonable definition of
Cartan form for constrained problems, a concept that, as is known, has been
central in the traditional calculus of variations.
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In this talk we shall deal with this subject in the case of Euler-Poincaré
reduction for principal fibre bundles, which in fact constitutes the first gen-
eralization to field theory of this kind of classical reduction from analytical
mechanics [4, 5, 12].

We begin with the statement of the problem, we shall see next how this
kind of reduction can be formulated as a constrained variational problem,
and finally compare the results so obtained with those arising from an appli-
cation of the Lagrange multipliers method which, as we will see, has a nice
geometrical interpretation for this case.

1 Statement of the problem

The so-called Euler-Poincaré reduction arises in the study of mechanical sys-
tems on a Lie group G defined by Lagrangians L : TG → R that are invariant
under the natural action (on the left) of G on its tangent bundle. Due to its
invariance, L induces a function l : TG/G = G → R on the Lie algebra of the
group G, the reduced Lagrangian, in such a way that the motion equations
on G are equivalent to a certain class of first order equations on G. These
equations are known as Euler-Poincaré equations and can be obtained from
a constrained variational problem of a certain kind.

The originating example is provided by the rigid solid (without external
forces), where: G = SO(3), G = R3 and

l : Ω ∈ R3 7→ 1

2
〈IΩ, Ω〉 (1.1)

where I is the inertia tensor and 〈 , 〉 denotes the standard scalar product.
Taking as admissible infinitesimal variations for the reduced lagrangian l

curves δΩ with the form:

δΩ =
dΣ

dt
+ Ω× Σ (1.2)

where Σ is a curve in R3 and × is the usual vectorial product, one obtains
the classical Euler-Poincaré equations:

− d

dt
(IΩ) + IΩ× Ω = 0

(Lagrange (1788), Poincaré (1901), Hamel (1904,1949), Arnold (1966,1988)
etc.)

The first attempt to extend these ideas to field theory was done in [1],
where the authors consider Lagrangians L : J1P → R on the 1-jet exten-
sion of a principal fibre bundle p : P → X (X a manifold oriented by a
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volume element ω), that are invariant for the natural action of its struc-
ture group G. Taking advantage of a well-known result [9], that states that
J1P/G = C(P ) = bundle of connections of P , the authors generalize in this
new situation the Euler-Poincaré reduction from mechanics, in the following
sense:

Given the reduction morphism Φ:

J1P

��

Φ

''OOOOOOOOOOOO

P

p

��

(J1P )/G = C(P )
π

wwnnnnnnnnnnnnn

X

s

CCj1s

@@

σ=Φ◦j1s

@@

(1.3)

the G-invariant Lagrangian L : J1P → R defines a variational problem on P
of order 1, whose critical sections, s, are transformed by Φ onto the critical
connections σ = Φ ◦ j1s of a constrained variational problem of order 0 on
C(P ) (which shall be specified in §2) with Lagrangian l : C(P ) → R, the
projection of L by the reduction morphism.

The critical sections for this constrained variational problem are the so-
lutions of a system of first order partial differential equations (generalized
Euler-Poincaré equations), from whom, as in mechanics, the critical sections
of the original problem can be recovered, taking the inverse image by the
reduction morphism.

2 Euler-Poincaré reduction in principal fibre

bundles as a constrained variational prob-

lem

Motivated by this kind of problems, in [8] the authors proposed an approach
to the calculus of variations with constraints that not only allows to explain
such problems, but can also be applied to many other situations (geometric
mechanics, the problem of Lagrange, graviting relativistic fluids, etc.).

The starting point for this formalism is a Lagrangian L ∈ C∞(JkY ) on
the fibre bundle jkπ : JkY → X of the k-jets of local sections of a fibre
bundle π : Y → X on an n-dimensional manifold oriented by a volume
element ω, a submanifold S ⊆ JkY such that (jkπ)(S) = X (the con-
straint), and a subalgebra AS of the Lie algebra X(k)(Y ) of infinitesimal
contact transformations of order k (the variation algebra). On the subset
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ΓS(X,Y ) =
{
s ∈ Γ(X, Y ) / Im jks ⊆ S

}
of sections that satisfy the con-

straint one has the functional

L(s) =

∫
X

(jks)∗Lω

defined for sections s ∈ ΓS(X, Y ) for which the previous integral exists.
Denoting by Ac

S the subalgebra of those elements in the variation algebra
AS whose support projects onto a compact subset of X, we may define the
differential of the functional L at any section s ∈ ΓS(X, Y ) by the rule:

(δsL)(D) =

∫
X

(jks)∗LD(Lω) ∈ R , D ∈ Ac
S (2.1)

From here the definition of a critical section can be given as follows:

Definition 2.1 A section s ∈ Γ(X, Y ) is critical for the constrained varia-
tional problem of Lagrangian density Lω, constraint submanifold S ⊆ JkY
and variation algebra AS ⊆ X(k)(Y ) if s satisfies the constraint, that is,
s ∈ ΓS(X, Y ), and the differential δsL : Ac

S → R at the section s vanishes.

Furthermore, we shall make the following assumption on the variation
algebra from now on:

Condition 2.1 (Parameterization condition)
There exists a vector bundle q : E → Y (bundle of parameters) and a vector
bundle morphism P : J1(E/X)J1Y → (V Y )J1Y (where J1(E/X)J1Y is the
vector bundle j1q : J1(E/X) → J1Y and where V YJ1Y is the pull-back of
V Y to J1Y ) such that for each admissible section s ∈ ΓS(X,Y ) the first
order differential operator Ps : Γ(X, s∗E) → Γ(X, s∗V Y ) defined by Ps(es) =
P (j1es) (parameterization operator) satisfies:

Ps(Γ(X, s∗E)) = Av
s = {Dv

s /D ∈ AS}

Ps(Γ
c(X, s∗E)) = Ac

s = {Dv
s /D ∈ Ac

S}
where Dv

s = θ1(D)jks denotes the vertical component along s of the vector
field D.

In these conditions we have the following result:

Proposition 2.1 (Definition of the operator P+
s adjoint to Ps) There

exists a unique first order differential operator P+
s : Γ(X, s∗V Y ∗⊗ΛnT ∗X) →

Γ(X, s∗E∗ ⊗ ΛnT ∗X) such that:

〈Ps(e), E〉 = 〈e, P+
s (E)〉+ d(〈σPs(e), E〉)

∀e ∈ Γ(X, s∗E) , ∀E ∈ Γ(X, s∗V ∗Y ⊗ ΛnT ∗X)
(2.2)
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where σPs is the symbol of the operator Ps and where the bilinear products
are the obvious ones.

Formula (2.2) provides a commutation rule which, when applied to the
first variation formula of the unconstrained variational calculus (see, for ex-
ample [14], [6, Theorem 2.5]) leads to the following fundamental result:

Theorem 2.2 (Constrained first variation formula) For any admissi-
ble section s ∈ ΓS(X, Y ) and any admissible infinitesimal variation D ∈ AS

of a constrained variational problem with Lagrangian density Lω on JkY ,
constraint submanifold S ⊆ JkY and variation algebra AS ⊆ X(k)(Y ), satis-
fying the parameterization condition 2.1, one has:

(jks)∗LD(Lω) = 〈eDv
s
, P+

s E(s)〉+ d
[
(j2k−1s)∗iD(2k−1)

Θ + 〈σPs(eDv
s
), E(s)〉

]
where E(s) and Θ are respectively the Euler-Lagrange operator and any Car-
tan form for the Lagrangian density Lω as an unconstrained problem and
where eDv

s
∈ Γ(X, s∗E) is any section such that Ps(eDv

s
) = Dv

s .
The linear functional δsL defined by (2.1) is then given by the formula:

(δsL) (D) =

∫
X

〈eDv
s
, P+

s E(s)〉 , D ∈ Ac
S (2.3)

where eDv
s
∈ Γc(X, s∗E) is any section such that Ps(eDv

s
) = Dv

s .

From formula (2.3), taking into account the arbitrariness of the section
eDv

s
∈ Γc(X, s∗E), it follows that:

Corollary 2.1 A section s ∈ Γ(X, Y ) is critical for the constrained varia-
tional problem if and only if:

Im jks ⊆ S , P+
s E(s) = 0

The mapping P+E : s ∈ ΓS(X, Y ) 7→ P+
s E(s) ∈ Γ(X, E ⊗ ΛnT ∗X) is

determined when we fix the vector bundle of parameters E and morphism P
of parametrization for AS. We shall call it the Euler-Lagrange operator of
the constrained variational problem parameterized by P .

In this framework, all the typical questions of the unconstrained calculus
of variations (infinitesimal symmetries and Noether theorems, second varia-
tion, Hamiltonian formalism etc.) can be developed in a similar way [8, 15].

Coming back to the reduction problem corresponding to diagram (1.3), we
may now define a constrained variational problem on the bundle of connec-
tions C(P ) taking the reduced Lagrangian density lω, constraint submanifold
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S = {j1
xs | (Curv σ)(x) = 0} ⊂ J1(C(P )) and variation algebra, AS, the nat-

ural representation on the bundle of connections of the Lie algebra aut P of
infinitesimal automorphisms of the principal fibre bundle P [11].

The parametrization condition 2.1 for this constrained problem holds
taking as bundle of parameters E = (Ad P )C(P ), the pull-back to C(P ) of
the adjoint bundle of P , and a vector bundle morphism P : (j1

xB, j1
xσ) ∈

J1(E/X) 7→ ((dσB)x, j
1
xσ) ∈ V (C(P ))J1C(P ), where the differential (dσB)x ∈

T ∗
xX ⊗Adx P can be seen as an element of V (C(P )) via the natural identifi-

cation of this bundle with (T ∗X ⊗ Ad P )C(P ).
The parametrization operator Pσ : Γ(X, Ad P ) → Γ(X, T ∗X ⊗ Ad P ) is

the differential dσ with respect to the connection σ and its adjoint is the
corresponding divergence operator divσ. The characterization of critical sec-
tions of this problem following Corollary 2.1 is then given by Euler-Poincaré
equations:

Curv σ = 0 , divσ (Elω(σ)) = 0 (2.4)

where Elω is the Euler-Lagrange operator associated to the Lagrangian den-
sity lω as an unconstrained variational problem.

The relation between the solutions of this problem and those of the orig-
inal problem can be summarized as follows:

Theorem 2.3 (Reduction and reconstruction) If a section s ∈ Γ(X, P )
is critical with respect to the unconstrained variational problem Lω on J1P ,
then the projected section σ = Φ ◦ j1s ∈ Γ(X, C(P )) is critical with respect to
the constrained variational problem on C(P):(

lω, S = {j1
xσ | (Curv σ)(x) = 0},AS = aut P acting on C(P )

)
(2.5)

Conversely, if σ ∈ Γ(X, C(P )) is in the image of Φ (i.e. σ = Φ ◦ j1s for
some s ∈ Γ(X, P )) and is critical with respect to the constrained variational
problem (2.5), then any s ∈ Γ(X, P ) such that σ = Φ ◦ j1s is critical with
respect to the original variational problem.

As an illustration, let us see which is this reduction in the example of
mechanics considered at the beginning of this talk.

In this case X = R, P = G × R and J1P = TG × R, so that Ad P and
C(P ) can be identified with G×R and, therefore, Γ(R, Ad P ) and Γ(R, C(P ))
can be identified with the space C∞(R,G) of the C∞ curves on the Lie algebra
G.

Our constrained variational problem is defined by the reduced Lagrangian
l ∈ C∞(C(P )), there doesn’t exist constraint submanifold and, identifying V P
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with the induced vector bundle (G × R)P , there follows that the parameter-
ization operator at each curve Ω ∈ C∞(R,G) is the first order differential
operator on C∞(R,G):

PΩ : Σ ∈ C∞(R,G) 7→ dΣ

dt
+ [Ω, Σ]

where [ , ] is the Lie bracket of G.
We recover in this way the expression (1.2) that defines the infinitesimal

admissible variations for the dynamics of the rigid solid. In particular, taking
the reduced Lagrangian (1.1) one obtains, using the duality defined by the
Euclidean scalar product, Eldt = IΩ, so that making use of (2.4), we get the
classical Euler-Poincaré equations:

P+
Ω (Eldt(Ω)) = − d

dt
(IΩ) + IΩ× Ω = 0

We may observe that the reduction obtained in this way corresponds to a
Lagrangian L = Φ∗l ∈ C∞(TX) which is now G-invariant for the action on
the right.

Remark 1 Coming back to the general situation, we may also observe that
the Euler-Poincaré equations (2.4) also hold for reduced Lagrangians l ∈
C∞(JkC(P )) of order k > 0 just taking the corresponding Euler-Lagrange
operator Elω of order 2k. In this case the reduction refers to a variational
problem on Jk+1P with Lagrangian L = Φ∗

(k)l ∈ C∞(Jk+1P ) where Φ(k) is the

k-jet extension of the reduction morphism Φ: J1P → C(P ), i.e. Φ(k)(j
k+1s) =

jk
x(Φ ◦ j1s).

3 Lagrange Multipliers

Taking into account that the constraint submanifold S ⊂ J1C(P ) is the zero

locus of the section Φ ∈ Γ
(
J1C(P ), (Λ2T ∗X ⊗ Ad P )J1C(P )

)
defined by the

rule:
Φ(j1

xσ) = (Curv σ)(x)

it is then natural to take as Lagrange multipliers for this problem sections λ ∈
Γ(X, Λ2TX ⊗Ad∗ P ) and to consider the unconstrained variational problem
on J1 (C(P )×X (Λ2TX ⊗ Ad∗ P )) with Lagrangian:

l̃(j1
xσ, j1

xλ) = l(j1
xσ) + 〈λ(x), (Curv σ)(x)〉 (3.1)

where 〈 , 〉 is the duality bilinear product.
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In local coordinates (xν , Aj, λµν
i ) on the bundle C(P )×X (Λ2TX⊗Ad∗ P ),

induced by a basis of the Lie algebra G with structure constants ci
jk, one gets:

l̃ = l(x, Ai) +
∑
µ<ν

λµν
i

(
Ai

µν − Ai
νµ − ci

jkA
j
µA

k
ν

)
Bearing in mind that for each section (σ, λ) ∈ Γ(X, C(P ) ×X (Λ2TX ⊗

Ad∗ P )) one has: (σ, λ)∗V (C(P )×X (Λ2TX ⊗ Ad∗ P )) = (T ∗X ⊗ Ad P )⊕X

(Λ2TX ⊗ Ad∗ P ) , the Euler-Lagrange operator El̃ω of the Lagrangian density
l̃ω can be expressed as:

El̃ω(σ, λ) = (Elω(σ)− divσ λ, Curv σ)

hence we obtain the following result:

Theorem 3.1 A section (σ, λ) ∈ Γ(X, C(P )×X (Λ2TX ⊗Ad∗ P )) is critical
for the unconstrained variational problem with Lagrangian density l̃ω if and
only if:

Curv σ = 0, Elω(σ) = divσ λ

In particular, the σ-component of a critical section (σ, λ) for this varia-
tional problem is a critical section of the constrained variational problem
(2.5) (lω, S,AS) on C(P ).

The converse doesn’t necessarily hold, i.e. : divσ Elω(σ) = 0 doesn’t imply
(in general) that there exists any λ such that Elω(σ) = divσ λ: the obstruction
is hence of topological nature.

Remark 2 If we take in the expression (3.1) a reduced Lagrangian l ∈
C∞(JkP ) of order k > 0, Theorem 3.1 still holds, because the second term
〈λ, Curv σ〉 of that expression remains unchanged.

At this point, a natural further development would be to study the prop-
erties of the Cartan form Θl̃ω associated to the Lagrangian density l̃ω which,
in this case, has the nice intrinsic expression:

Θl̃ω = Θlω − Curv∧(∗λ)

where Curv is the curvature 2-form associated to the universal connection
of the principal fibre bundle PC(P ) (see [10]), ∗λ is the corresponding pull-
back to this bundle of the contraction of the Lagrange multiplier λ with the
volume element ω and ∧ is the exterior product with respect to the natural
bilinear duality product.

In particular, the following questions remain open:
Cartan equation (σ, λ)∗iDdΘl̃ω = 0, ∀D ∈ X(J1(C(P )×X (Λ2TX⊗Ad∗ P ))),
where (σ, λ) ∈ Γ(X, J1(C(P ) ×X (Λ2TX ⊗ Ad∗ P ))); Regularity conditions,
with the objective to assure the holonomy of the component σ of the solutions
(σ, λ) of Cartan equation; Multisymplectic and Hamiltonian structures, etc.
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[9] P.L. Garćıa. Connections and 1-jet fiber bundles. Rend. Sem. Mat.
Univ. Padova, 47:227–242, 1972.
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