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Abstract

Under certain conditions on the constraint submanifold, the concepts
of Cartan form, momentum map and the corresponding conservation
laws are introduced for vakonomic dynamical systems. The theory is
illustrated by two classical examples (the skateboard and the generalized
elastica), letting an insight into the differences between the vakonomic
and non-holonomic methods.
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1 Introduction

One of the most remarkable results of the variational theory in the second
half of the 20th century has been, without any doubt, the discovery of the
relation between the classical Cartan form and the theorems of Emmy Noether
that allow us to associate first integrals of the Euler-Lagrange equations to
the infinitesimal symmetries of the Lagrangian. Once this relation was well
established by the beginning of the 70’s for first order problems [5, 8, 13, 14]
and generalized to higher order ones by the beginning of the 80’s [4, 6, 7, 11,
16, 18], in [3, 17] this topic has been studied for variational problems with
non-holonomic constraints. In this paper we shall deal with the subject in the
particular case of vakonomic mechanics, where we shall construct a Cartan
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form and the corresponding momentum map, which solves this question in
a very simple and operative way for a wide range of this kind of variational
problems.

As is known [7, 18], a higher order variational problem in mechanics is
defined by consideration of an m-dimensional manifold M (the configuration
space) and a differentiable function L on R × T rM (the time-dependent La-
grangian), where T rM stands for the r-order tangent bundle of M , locally
coordinated by (qi, q̇i, . . . , qi

(r)) if M has local coordinates (qi), 1 ≤ i ≤ m.
The Lagrangian density defines the action functional on the space Γ(R,M)

of curves on M :

L : σ ∈ Γ(R,M) 7→
∫

R
L(t, σ(r)(t))dt ∈ R

and its first variation:

δσL : Dσ ∈ Xσ(M) 7→
∫

R
D(r)

σ L(t, σ(r)(t))dt ∈ R (1)

where Xσ(M) = Γ(R, σ∗TM) stands for the space of vector fields defined along
σ, σ ∈ Γ(R,M) 7→ σ(r) ∈ Γ(R, T rM) stands for the natural lifting of curves in
M to its higher order vector bundle, locally:

σ(t) = (qi(t)) 7→ σ(r)(t) = (qi
(j)(t)), qi

(j)(t) =
dj

dtj
qi(t)

and D ∈ X(R × M) 7→ D(r) ∈ X(R × T rM) stands for the induced natural
lifting of vector fields on R×M to vector fields on R× T rM , locally:

D = f(t, qi)
∂

∂t
+ gi(t, qi)

∂

∂qi
7→ D(r) = f(t, qi)

∂

∂t
+ gi

(j)(t, q
i
(k))

∂

∂qi
(j)

where gi
(j+1) = d̂

dtg
i
(j) − qi

(j+1)
d̂
dtf and d̂

dt = ∂
∂t + q̇i ∂

∂qi + q̈i ∂
∂q̇i + . . . is the total

derivative with respect to t.
From this local expression it is clear that D(r) along σ(r) depends only on

the value of D along σ. Thus D
(r)
σ in formula (1) is a well-defined element in

Xσ(r)(T rM).

Definition 1. A curve σ ∈ Γ(R,M) is critical for the dynamical system
defined by (M,L) if the first variation δσL of the action functional at σ (1)
vanishes for any Dσ ∈ Xc

σ(M), compact-supported vector field along σ.

In [7] the authors associate to any Lagrangian L a Cartan 1-form on
R× T 2r−1M :

ΘL = θ(r) ◦ ΩL + Ldt (2)
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where θ(r) is the structure 1-form of R×T rM , a T (T r−1M)-valued 1-form on
on R× T rM , locally:

θ(r) =
r−1∑
j=0

(dqi
(j) − qi

(j+1)dt)⊗ ∂

∂qi
(j)

(for whom θ(r)
∣∣
σ(r) = 0), and ΩL is the momentum form associated to L, a

T ∗(T r−1M)-valued function on R× T 2r−1M with local expression:

ΩL =
∑

i

r∑
j=1

r−j∑
h=0

(−1)h

(
d̂

dt

)h
∂L

∂qi
(j+h)

 dqi
(j−1)

and where ◦ stands for the natural duality product.
In these conditions, we get:

Proposition. There exists a T ∗M -valued 1-form EL on R× T 2r−1M (Euler
form) such that:

dΘL = θ(1)∧EL + θ(r)∧θ(2r−1) ◦ η (3)

for some T ∗(T r−1M)⊗ T ∗(T 2r−2M)-valued function η, and where ∧ is taken
with respect to the natural bilinear products.

From this proposition, independently of the chosen Euler form EL, we may
define the Euler operator EL ∈ Γ(R× T 2rM,T ∗M) by the rule:

EL(t, σ(2r)(t))dt = (σ(2r−1))∗EL(t) =
∑

i

(
r∑

h=0

(−1)h dh

dth

(
∂L

∂qi
(h)

)
σ(r)

)
dqi

(4)
Using now (2) and (3), one easily obtains the first variation formula of the
Lagrangian density:

Theorem 1.1 (First variation formula). For any vector field D ∈ X(R×M):

LD(r)(Ldt) = θ(1)(D(1)) ◦ EL + diD(2r−1)Θ + θ(2r−1) ◦ η′ (5)

for some section η′ of T ∗(T 2r−2M). Therefore, for any curve σ ∈ Γ(R,M)
and vector field along σ, Dσ ∈ Xσ(M):

(δσL)(Dσ) =
∫

R
〈Dσ, EL(σ)〉dt + d(i

D
(2r−1)
σ

Θ) (6)

From this one gets:
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Theorem 1.2 (Characterization of critical curves). Let L be a Lagrangian
density and σ ∈ Γ(R,M) a curve on M . The following are equivalent:

1. σ is critical for the variational problem (M,L).

2. EL(σ) = 0 (Euler-Lagrange equations)

3. iDdΘL

∣∣
σ(2r−1) = 0, ∀D ∈ X(R× T 2r−1M) (Cartan equations).

From this point, the whole theory develops naturally with the study of
Noether invariants, second variation, etc... [7].

2 Vakonomic mechanics

Mechanics with non-holonomic constraints [1, 3, 9, 17] arises now by consid-
eration of two more data, the first one a submanifold S ⊆ R × TM , defined
by the zeros of functionally independent differentiable functions f1, . . . , fk ∈
C∞(R× TM) (the constraint) and, for each curve σ ∈ Γ(R,M) satisfying the
constraint (i.e. f1, . . . , fk = 0 along σ(1)), a subspace Aσ ⊆ Xσ(M) (the space
of admissible infinitesimal variations).

In these conditions, if ΓS(R,M) = {σ ∈ Γ(R,M) / Im(σ(1)) ⊂ S} ⊂
Γ(R,M) is the subset of curves that satisfy the constraint (admissible curves),
we may introduce the notion of critical admissible curve:

Definition 2. An admissible curve σ ∈ ΓS(R,M) is critical for the constrained
mechanical system defined by (M,L, S,A) if the first variation δσL of the
action functional at σ vanishes for any Dσ ∈ Ac

σ(M) = Aσ∩Xc
σ(M), compact-

supported admissible infinitesimal variation along σ.

Two are the main historical choices for the subspaces Aσ:

ANH
σ =

{
Dσ ∈ Xσ(M) / Dσ ∈ ker

(
Ωf1 , . . . ,Ωfk

)}
Non-holonomic

Aσ =
{

Dσ ∈ Xσ(M) / D(1)
σ tangential to S

}
Vakonomic

where Ωfα =
∑

i
∂fα

∂q̇i dqi are the momentum forms associated to fα.
The condition for Dσ ∈ ANH

σ is a system of linear equations (which de-
pends only on S) arising from the consideration of the d’Alembert principle.
The space ANH

σ is hence a C∞(R)-submodule of Xσ(M) and formula (6) to-
gether with the main lemma of the calculus of variations allows us to charac-
terize the corresponding critical curves:

σ ∈ ΓS(R,M) critical for (M,L, S,ANH) ⇔ EL(σ)|ANH
σ

= 0 (7)
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The condition for Dσ ∈ Aσ, on the other hand, is a system of first order
differential equations defining an R-subspace of Xσ(M), and essentially cor-
responds to the classical problem of Lagrange [2, 10]. This space is inter-
preted as the tangent space at σ of the manifold ΓS(R,M): For any variation
{σλ}λ∈R ⊂ ΓS(R,M) of admissible curves σλ, the induced tangent vector
Dσ = d

dλσλ at σ = σ0 is contained in Aσ, and the converse holds under certain
regularity assumptions on the curve σ [12].

In this paper we shall study this second case (vakonomic mechanics) tak-
ing as constraint a submanifold S = (f1, . . . , fk)0 with fα ∈ C∞(R × TM),
df1, . . . , dfk linearly independent along S and satisfying the following:

Main Hypothesis. There exist on S(2) =
{
(t, σ(2)(t)) / σ ∈ ΓS(R,M)

}
⊆

R× T 2M certain TM -valued functions Nα on such that:

Ωfα(Nβ) = 0, Efα(Nβ) = δα
β 1 ≤ α, β ≤ k (8)

The main consequence of this condition is that it allows us to parameterize
the space of admissible infinitesimal variations Aσ in the following way:

Proposition. For each admissible curve σ ∈ ΓS(R,M), the differential oper-
ator Pσ : Xσ(M) → Xσ(M) defined by:

Pσ(Dσ) = Dσ −
∑
α

D(1)
σ (fα)Nα, Dσ ∈ Xσ(M) (9)

is a projector Pσ : Xσ(M) → Xσ(M) whose image is the R-subspace Aσ and
whose kernel is the C∞(R)-module 〈N1, . . . , Nk〉.

Proof. Clearly, Dσ ∈ Aσ ⇒ Dσ = Pσ(Dσ) ∈ Im Pσ. Let’s prove Im Pσ ⊆ Aσ.
Using first variation formula (5) for the Lagrangian densities fαdt:

D(1)
σ (fα) = Efα(Dσ) +

d

dt
(Ωfα(Dσ)), Dσ ∈ Xσ(M) (10)

Hence

(Pσ(Dσ))(1)(fβ) = Efβ (Pσ(Dσ)) +
d

dt
(Ωfβ (Pσ(Dσ))) =

= Efβ

(
Dσ −

∑
α

(
Efα(Dσ) +

d

dt
(Ωfα(Dσ))

)
Nα

)
+

+
d

dt

(
Ωfβ

(
Dσ −

∑
α

(
Efα(Dσ) +

d

dt
(Ωfα(Dσ))

)
Nα

))
= 0

where the last equality comes from (8). Hence Pσ(Dσ) ∈ Aσ, ∀Dσ ∈ Xσ(M).
For the kernel, Dσ ∈ ker Pσ ⇒ Dσ =

∑
α D

(1)
σ (fα)Nα ∈ 〈N1, . . . , Nk〉. On

the other hand, from (10) and (8) follows that 〈N1, . . . , Nk〉 ⊆ ker Pσ.
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Proposition. The differential operator P+
σ : X∗

σ(M) → X∗
σ(M), defined by:

P+
σ (Eσ) = Eσ +

∑
α

λEσ
α Efα −

(
d

dt
λEσ

α

)
Ωfα , ∀Eσ ∈ X∗

σ(M) (11)

where λEσ
α = −Eσ(Nα), satisfies the commutation rule:

〈Pσ(Dσ), Eσ〉 = 〈Dσ, P+
σ Eσ〉+

d

dt

(∑
α

λEσ
α Ωfα(Dσ)

)
(12)

Proof. The proof is direct from (10), (9).

With this characterization of admissible infinitesimal variations as the
image of the differential operators Pσ and the corresponding commutation
rule (12), we may give the analogous to first variation formula (6):

Theorem 2.1 (First variation formula). For any admissible curve σ ∈ ΓS(R,M)
and vector field along σ, Dσ ∈ Xσ(M):

(δσL)(Dσ) =
∫

R
〈Dσ, P+

σ EL(σ)〉dt + d
(
i
D

(2r−1)
σ

ΘL + λEL
α Ωfα(Dσ)

)
where Dσ = Pσ(Dσ) ∈ Aσ.

Proof. Introduce in the formula of variation without constraints (6) the pa-
rameterization Pσ of the space Aσ of infinitesimal variations (9), and then
apply the commutation rule (12).

If we now consider the basic formulas (2) and (3) for the first order den-
sities fαdt and for the higher order one Ldt, considering (4) and (11) we get:

Proposition. The 1-form along S(2r) = {(t, σ(2r)(t)) / σ ∈ ΓS(R,M)} ⊂ R×
T 2rM :

Θ̃L = ΘL +
∑
α

λEL
α Θfα , λEL

α = −EL(Nα) ∈ C∞(S(2r)) (13)

satisfies:
dΘ̃L = θ(1) ◦ ẼL + θ(r)∧θ(2r−1) ◦ η (14)

where ẼL is the T ∗M -valued 1-form EL +
∑

α

(
λEL

α Efα − dλEL
α ⊗ Ωfα

)
, and

therefore
ẼL

∣∣∣
σ(2r)

= P+
σ EL(σ), ∀σ ∈ ΓS(R,M) (15)

This 1-form Θ̃L generalizes for this kind of constrained problems the Car-
tan 1-form of non-constrained problems as can be justified by the following:
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Theorem 2.2 (Characterization of critical curves). Let L be a Lagrangian
density, S a constraint submanifold satisfying the Main Hypothesis, and σ ∈
ΓS(R,M) an admissible curve on M . The following are equivalent:

1. σ is critical for the constrained variational problem (M,L, S,A).

2. P+
σ EL(σ) = 0 (Euler-Lagrange equations)

3. iDdΘ̃L

∣∣∣
σ(2r)

= 0, ∀D ∈ X(R× T 2rM) (Cartan equations).

Proof. It is easy to see that Pσ(Xc
σ(M)) = Ac

σ. Hence Euler-Lagrange equa-
tions are a consequence of Definition 2 and Theorem 2.1, where the arbitrari-
ness of Dσ in the C∞(R)-module Xc

σ(M) allows us to apply the main lemma
of the calculus of variations.

Regarding Cartan equations, they are a direct consequence of Euler-La-
grange equations 2., together with (14) and (15).

Remark 1. As Pσ is a projector onto Aσ and ker Pσ ⊆ ANH
σ , we have Aσ +

ANH
σ = Xσ(M). Consequently an admissible curve is critical for both the

vakonomic and non-holonomic problems if and only if it is critical for the
problem without constraints (M,L).

Remark 2. Observe that from (10) we may conclude that Pσ is the identity
on any element Nσ of the C∞(R)-submodule ker(Ωf1 , . . . ,Ωfk , Ef1 , . . . , Efk).
Using now (12) and Euler-Lagrange equations, for any such Nσ ∈ Xσ(M)
there holds 0 = 〈Nσ, P+

σ EL(σ)〉 = 〈Nσ, EL(σ)〉 along critical curves.

3 Noether theorem and Momentum map

Cartan’s characterization of critical curves plays a central role in establishing
the relation between the Cartan form and Noether’s theorems for infinitesimal
symmetries of the problem. Within our framework these are given by:

Definition 3. An infinitesimal symmetry for the constrained dynamical sys-
tem (M,L, S) is any vector field D ∈ X(R×M) such that:

LD(r)(Ldt) = 0, D(1) is tangential to S

From this definition, we may state:

Theorem 3.1 (Noether). If D is an infinitesimal symmetry and σ ∈ ΓS(R,M)
is a critical curve for (M,L, S,A), then:

d iD(2r)Θ̃L

∣∣∣
σ(2r)

= 0
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Proof. Due to the functoriality of the notion of Cartan form [16], we have
LD(2r−1)ΘL = 0. On the other hand, both Θfα = θ(1) ◦ Ωfα + fαdt and
LD(1)Θfα = θ(1) ◦ Ω′ + D(1)(fα)dt + fαLD(1)dt vanish when restricted to any
curve σ(2r) with σ ∈ ΓS(R,M) (the latter because D(1) is tangential to S).
Hence by (13):

LD(2r)Θ̃L

∣∣∣
σ(2r)

= 0, ∀σ ∈ ΓS(R,M)

Using now Cartan’s characterization of critical curves, iD(2r)dΘ̃L

∣∣∣
σ(2r)

= 0,
which together with the previous formula yields our theorem.

Hence, using the constrained Cartan form, we may obtain the Noether
invariants associated to any infinitesimal symmetry, allowing us to define the
corresponding momentum map:

Definition 4 (Momentum map). We shall call momentum map associated to
our constrained variational problem the map:

µ̃ : σ ∈ ΓS(R,M) 7→ µ̃(σ) ∈ Sym∗ ⊗ C∞(R)

where Sym is the Lie algebra of infinitesimal symmetries of (M,L, S,A) and

(µ̃(σ))(D) = iD(2r)Θ̃L

∣∣∣
σ(2r)

∈ C∞(R) (16)

which takes constant values along critical curves.

4 Examples

4.1 The skateboard on an inclined plane

The model of the skateboard on an inclined plane is that of an object with
three degrees of freedom (position (x, y) ∈ R2 on the plane and direction
ϕ ∈ S1 of the wheels with respect to the horizontal axis x) represented by
the manifold M = R2

(x,y) × S1
ϕ, and moving under the gravity force and one

constraint: the velocities on the plane can be realized only in the direction of
the wheels: ẋ sinϕ− ẏ cos ϕ = 0.

The Lagrangian is in this case L = 1
2m(ẋ2 + ẏ2)+ 1

2Iϕ̇2− gy (m the mass,
I the inertia of the skateboard, and g the effective gravity on the inclined
plane), and the constraint is given by the function f = ẋ sinϕ− ẏ cos ϕ. Our
constraint satisfies then the Main Hypothesis, and the system of equations (8):

(
sinϕ − cos ϕ 0

−ϕ̇ cos ϕ −ϕ̇ sinϕ ẋ cos ϕ + ẏ sinϕ

)Nx

Ny

Nϕ

 =
(

0
1

)
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on the open subset (ẋ, ẏ) 6= (0, 0) of S has solution:

N = Nx
∂

∂x
+ Ny

∂

∂y
+ Nϕ

∂

∂ϕ
=

1
ẋ cos ϕ + ẏ sin ϕ

∂

∂ϕ
(17)

Following (9), the associated parameterization Pσ : Xσ(M) → Aσ of the
space of admissible infinitesimal variations is:

Pσ

(
a

∂

∂x
+ b

∂

∂y
+ c

∂

∂ϕ

)
= a

∂

∂x
+ b

∂

∂y
+

ḃ cos ϕ− ȧ sinϕ

ẋ cos ϕ + ẏ sinϕ

∂

∂ϕ

Using now the well known Euler-Lagrange operator EL = −mẍdx − (g +
mÿ)dy − Iϕ̈dϕ, as Pσ is known and ker Ωf = 〈cos ϕ ∂

∂x + sinϕ ∂
∂y , ∂

∂ϕ〉, we get
the Euler-Lagrange equations of the vakonomic and non-holonomic problems:

Vakonomic
mẍ +

d

dt

(
Iϕ̈ sinϕ

ẋ cos ϕ + ẏ sinϕ

)
= 0

g + mÿ − d

dt

(
Iϕ̈ cos ϕ

ẋ cos ϕ + ẏ sinϕ

)
= 0

ẋ sinϕ− ẏ cos ϕ = 0

Non-Holonomic
mẍ cos ϕ + (g + mÿ) sinϕ = 0

Iϕ̈ = 0
ẋ sinϕ− ẏ cos ϕ = 0

The Cartan form (13) in the vakonomic case is:

Θ̃L =
(

mẋ +
Iϕ̈

ẋ cos ϕ + ẏ sinϕ
sinϕ

)
dx +

(
mẏ − Iϕ̈

ẋ cos ϕ + ẏ sin ϕ
cos ϕ

)
dy+

+ Iϕ̇dϕ−
(

1
2
m(ẋ2 + ẏ2) +

1
2
Iϕ̇2 + gy

)
dt

Using the infinitesimal symmetries ∂
∂t ,

∂
∂x of our problem we get the corre-

sponding conservation laws (16):

E =
1
2
m(ẋ2 + ẏ2) +

1
2
Iϕ̇2 + gy

µx = mẋ +
Iϕ̈

ẋ cos ϕ + ẏ sinϕ
sinϕ

Taking now the vector field N = cos ϕ(ẋ cos ϕ + ẏ sinϕ) ∂
∂x + sinϕ(ẋ cos ϕ +

ẏ sinϕ) ∂
∂y + ϕ̇ ∂

∂ϕ from ker(Ωf , Ef ), and following Remark 2:

(mẍ cos ϕ + (g + mÿ) sinϕ)(ẋ cos ϕ + ẏ sinϕ) + Iϕ̈ϕ̇ = 0
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which together with the expression ϕ̇ = ÿẋ−ẍẏ
ẋ2+ẏ2 arising from the constraint,

allows to reduce the original system of equations to the system:

E =
1
2
m(ẋ2 + ẏ2) +

1
2
I

(
ÿẋ− ẍẏ

ẋ2 + ẏ2

)2

+ gy

µx = mẋ− ẏ

ÿẋ− ẍẏ
(mẍẋ + (g + mÿ)ẏ)

0 = ẏ cos ϕ− ẋ sinϕ

Therefore we have reduced the original system of three third order differential
equations on (x, y, ϕ) to a system of two second order differential equations
on the unknowns (x, y) and a third equation (the constraint) that allows to
recover the unknown ϕ. This system can be solved with the usual methods of
numerical integration.

4.2 Generalized elastica

We shall consider now curves σ : [0, L] → R2
(x,y) with fixed length L on the

plane R2 , parameterized by its length element (observe that the generaliza-
tion of the previous results to fixed boundary problems is straightforward).
The constraint is then defined by the function f =

√
ẋ2 + ẏ2 − 1. The La-

grangian densities we shall consider will be second order ones given by arbi-
trary functions of the curvature times length element: Ldt = F (κ)ds, where
κ(t) = ẋÿ−ẍẏ

(ẋ2+ẏ2)3/2 and ds =
√

ẋ2 + ẏ2dt. Easy computations allow to obtain:

EL = 0 · T +

(
d̂

ds

2

(F ′(κ)) + κ2F ′(κ)− κF (κ)

)
N

where d̂
ds = 1√

ẋ2+ẏ2

d̂
dt and where T, N represent the natural T ∗M -valued

functions on TM defined from the tangent and normal vector fields of σ:

T =
ẋ√

ẋ2 + ẏ2

∂

∂x
+

ẏ√
ẋ2 + ẏ2

∂

∂y
, N =

−ẏ√
ẋ2 + ẏ2

∂

∂x
+

ẋ√
ẋ2 + ẏ2

∂

∂y

identifying T ∗R2 with TR2 using the metric.
The system of equations (8) is T · N = 0, −κN · N = 1 and has now as

solution for κ 6= 0: N = −1
κ N. This vector field allows to compute the operator

Pσ : Xσ(R2) → Xσ(R2) and its adjoint, P+
σ : Xσ(R2) → Xσ(R2):

Pσ(Dσ) = D‖
σ −

div D
‖
σ

κ
N, P+

σ (Eσ) = E‖σ − grad
(
Eσ · N

κ

)
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where D
‖
σ represents the component of Dσ tangential to σ and we identify

Xσ(R2) with X∗
σ(R2) using the metric.

On the other hand, ker Ωf = 〈N〉. The equations corresponding to the
vakonomic and non-holonomic problems are:

Vakonomic
− d

ds

(
1
κ

d2

ds2 (F ′(κ)) + κF ′(κ)− F (κ)
)

= 0
Non-Holonomic

d2

ds2 (F ′(κ)) + κ2F ′(κ)− κF (κ) = 0

For the case F (κ) = κ2 the vakonomic equations produce the well known result
[15] obtained for the (non-constrained) variational problems Ldt = (κ2 + c)ds:

2
d2

ds2
κ + κ3 = c · κ, c ∈ R

If we now compute the Cartan form:

Θ̃L =
1
κ

d̂

ds

2

(F ′(κ)) · 1√
ẋ2 + ẏ2

(ẋdx + ẏdy)−

− d̂

ds
(F ′(κ)) · 1√

ẋ2 + ẏ2
(−ẏdx + ẋdy) + F ′(κ) · 1

ẋ2 + ẏ2
(−ẏdẋ + ẋdẏ)

and consider the symmetries corresponding to translations D = a ∂
∂x +b ∂

∂y and
rotations R = −y ∂

∂x + x ∂
∂y , the corresponding conservation laws (16) are:

µ̃σ(D) =
(

1
κ

d2

ds2
(F ′(κ))T− d

ds
(F ′(κ))N

)
·D

µ̃σ(R) =
(

1
κ

d2

ds2
(F ′(κ))T− d

ds
(F ′(κ))N

)
·R + F ′(κ)

that correspond to the geometrical statements:(
1
κ

d2

ds2
(F ′(κ))T− d

ds
(F ′(κ))N

)
is parallel along σ

F ′(κ) is an affine function on the position

along the critical curves.
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